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ABSTRACT 

This report demonstrates the application of Bayesian networks for modelling and 
reasoning about uncertainties. A scenario for naval anti-surface warfare is constructed 
and Bayesian networks are used to represent and update uncertainties encountered in 
the process of 'situation assessment'. Concepts from information theory are used to 
provide a measure of uncertainty and understand its flow in a Bayesian network. This 
in turn yields analytical methods to formulate various effectiveness measures. 
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Representing Uncertainties Using Bayesian 
Networks 

Executive Summary 

The work reported here was undertaken in relation to a broader task which is aimed at 
providing better tools and techniques in aid of command, control, communications and 
intelligence (C3I). The task plan places major emphasis on using the techniques of 
modelling and simulation in the analysis and resolution of C3I problems. A crucial 
problem that decision makers face in any C3I process is the problem of uncertainty. 
Here we use Bayesian networks to model uncertainty and reason about it in both a 
qualitative and a quantitative manner. It is hoped that the tools developed here would 
be integrated with other existing simulation tools to provide a refined and more 
versatile modelling environment and decision aid package. 

The central features of the Bayesian network approach are: 

• Qualitative: Given a scenario, a Bayesian network depicts graphically the cause and 
effect relationship between various elements of the scenario. In doing so it also 
demonstrates conditional independence i.e., which factors are relevant and directly 
affect a given event and which factors are irrelevant - irrelevant in the sense that 
knowledge regarding these factors become redundant once the direct causes are 
known. 

• Quantitative: It updates probability distributions. Given a battlefield situation and a 
prior probability distribution over a hypothesis variable that represents possible 
enemy courses of action, Bayesian network provides the capability to update this 
probability distribution when fresh reconnaissance and surveillance data are 
obtained. 

The pictorial display of the model as a graph facilitates easy understanding and is 
therefore of great help in rapid model development. 

To make the analysis specific we construct a scenario of naval anti-surface warfare. The 
scenario has the advantage of being based upon an approved naval exercise called 
Operation Dardanelles. Bayesian networks are constructed to represent the uncertainties 
in the process of situation assessment. A temporal development of the scenario is 
considered, which evolves through a number of stages starting from the initial 
detection of the enemy to a major engagement between Blue and Orange forces. 
Bayesian networks are used at every stage to update knowledge and decide upon a 
course of action (COA). These networks have been implemented through the 
commercially available product Netica. 
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After demonstrating the applicability of Bayesian networks to command and control 
problems, we turn our attention towards developing analytical tools to investigate the 
flow of information and uncertainty in the network. Concepts from information theory 
are used to provide a measure of uncertainty, a measure of sensor effectiveness, a 
measure of the effectiveness of belief updating and finally a measure of the 
effectiveness of any particular Bayesian network considered as a decision aid tool. A 
number of examples related to the scenario are considered and numerical effectiveness 
measures obtained. 
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1. Introduction 

The work reported here was undertaken in relation to a broader task which is aimed at 
providing better tools and techniques in aid of command, control, communications and 
intelligence (C3I). The task plan places major emphasis on using the techniques of 
modelling and simulation in the analysis and resolution of C3I problems and major 
simulation tools have been developed under this task. A crucial problem that decision 
makers face in any C3I process is the problem of uncertainty. In fact many decision 
makers contribute to the view that good decision making is all about handling 
uncertainties properly. This is probably an extreme point of view but it emphasises the 
ever present effects of uncertainty on all aspects of decision making. This report 
documents an effort to find appropriate tools and techniques for constructing 
probabilistic models to represent and analyse uncertainties encountered in the process of 
command and control. The aim is to build models and develop analytical methods for 
both qualitative and quantitative analysis of uncertainty. It is hoped that the tools 
developed here would be integrated with other existing simulation tools to provide a 
refined and more versatile modelling environment and decision aid package. 

Of course there exist other methods, often mentioned in artificial intelligence and 
expert systems literature, that also handle uncertainty quite adequately, viz. fuzzy 
logic, belief functions etc., to mention a few [Kanal and Lemmer 1986, 1988; Dubois, 
Prade and Yager 1997]. However, a probabilistic approach has the advantage that it is 
based on a rigorous theory with a vast amount of known results. This is a great 
advantage and has in fact prompted many to claim that probability is the only sensible 
description of uncertainty and is adequate for all purposes [Lindley, 1987; Cheeseman, 
1986]. The opposing school of researchers point out that probability requires the 
enumeration of all possibilities, which in turn requires a vast amount of storage and 
computational manipulation making probabilistic methods computationally infeasible. 
It is to overcome this computational impasse that Bayesian networks were formulated 
[Pearl 1988, Neapolitan 1990]. This work adopts the Bayesian interpretation of 
uncertainty and uses Bayesian networks to build computational models. The emphasis 
is on obtaining numerical measures, wherever possible, of the effects we are interested 
in. 

Bayesian networks have been used extensively to model real world problems 
[Ottonello et al., 1992; Burnell and Horvitz, 1995; Fung and Del Favero, 1995; 
Heckerman, Breese and Rommelse, 1995] in particular it has been used very 
successfully in building expert systems to help medical diagnosis [Spiegelhalter et al., 
1993]. Levitt and his coworkers [Levitt et al. 1995] have proposed a formalism, that 
uses Bayesian networks to analyse synthetic aperture radar imagery to probabilistically 
rank interpretations of the presence and location of military forces on the ground. 
Chang et.al. [Chang et. al. 1996; Chang and Fung 1997; Lui and Chang 1996] have 
considered a number of problems in target recognition to which Bayesian networks can 
be   fruitfully   applied.   Staker   [Staker   1999]   uses   Bayesian   Networks   to   assist 
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commanders in determining the level of risk associated with their information system 
networks and Manka and Nicholson [Manka and Nicholson, 1999] discuss how 
Bayesian networks can help special forces to reason about enemy intent. Owing to its 
popularity a number of software packages are available to implement and manipulate 
Bayesian networks [Almond 1996]. In this respect Fabian and Lambert argue that 
traditional Bayesian networks offer a limited capacity for knowledge representation 
[Fabian and Lambert 1998] and offer a solution which has been implemented in the 
ATTITUDE architecture [Lambert 1998]. The networks constructed in this report have 
been implemented through the commercially available product Netica [Netica 1998]. 

We start by introducing the concept of probabilistic models and in appendix B we 
discuss Bayesian networks with just enough details to make this document self 
contained. 

In sections 2 we analyse the problem of 'situation assessment' [Endsley 1995]. Bayesian 
networks are constructed to represent the uncertainties in this process. To make the 
analysis specific we construct a scenario of naval anti-surface warfare. The scenario has 
the advantage of being based upon an approved naval exercise called 'Operation 
Dardanelles'. A temporal development of the scenario is considered, which evolves 
through a number of stages starting from the initial detection of the enemy to a major 
engagement between Blue and Orange forces. Bayesian networks are used at every 
stage to update knowledge and decide upon a course of action (COA). 

After this particular demonstration of the applicability of Bayesian networks to 
command and control problems, we turn our attention towards developing analytical 
methods to investigate the flow of information and uncertainty in the network. In 
section 3 information theoretical concepts are used to provide a measure of 
uncertainty, a measure of sensor effectiveness, a measure of the effectiveness of belief 
updating and finally a measure of the effectiveness of any particular Bayesian network 
considered as a decision aid tool. A number of examples related to the scenario are 
considered and numerical effectiveness measures obtained. 

Finally section 4 concludes this report with suggestions for future research. 

1.1 Probabilistic Models 

Models which capture uncertainties in terms of probabilities would be very relevant to 
our endeavour. For, probabilities not only provide us with numerical estimates to 
weigh alternatives against each other, but the calculus of probability also provides us 
with a rigorous procedure to articulate and manipulate qualitative relationships 
amongst alternatives. In our analysis here we will almost always adopt the subjective 
interpretation of probability [Appendix A]. This is because, when decision makers dealing 
with C3I problems quantify the likelihood of events, they generally base their estimates 
on their personal knowledge. They take into account the relevant information 
available, their past experience and sometimes even their intuition and prejudices to 
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decide upon a probability factor. This leads to the Bayesian formalism, the centre piece 
of which is the Baye's rule, that allows a decision maker to update his subjective belief 
when new facts are uncovered [Appendix A]. 

To clarify the basic notations; we denote random variables by capital letters X,Y,Z, ..., 
etc.- or by subscripted letters Xj, X2, X3, ..., etc. The values taken by these variables are 
denoted by lower case letters x„ y;-, zjt, ..., etc.- or correspondingly by xu, xiu X3k, ■■■, etc. 
The probability for X to assume the value x, is denoted by P(X=xd or in short Pfo). 

Suppose we have built a model of some C3I problem and the uncertainties in the 
model have been captured by, say, the four discrete random variables, W, X, Y and Z. 
The model will be an adequate model if it encodes all probabilistic information that 
permit us to calculate all marginal, conditional and joint probabilities like say, Pfo) or 
Pfoly,) etc. To be able to do this the model must provide the values of all joint 
distributions P(iVj, Xj, yk, z\). In fact this is the main aim of probabilistic modelling: once a 
■problem domain has been modelled through random variables, to provide a joint distribution 
over these variables that captures the uncertainties inherent in the system being modelled. In 
other words by a probabilistic model we mean [Pearl 1988]: 

A set U of discrete random variables together with a joint probability distribution 
P(-) defined over these variables. 

1.1.1 Computational Feasibility of Probabilistic Modelling 

If the random variables W, X, Y, Z, mentioned above are simple propositional variables 
we would require a storage with 24 places. If our problem is modelled by n random 
variables we would require at least 2" places of storage capacity, i.e. a storage capacity 
that grows exponentially. What is more, if we want to compute the conditional 
probability Pfoly;) say, then the rules of probability theory assert that we must 
evaluate the following 

P(r   v \     ^P(Wk>xi>yj>zl) 

y;     P(y>)    I>K^y^,) 
kil 

This entails dividing two marginal probabilities each involving a summation over an 
exponentially large number of variable combinations. In other words, we not only 
require a large storage capacity, we also require a large number of computational steps 
to obtain the information we need from the model. This computational impasse was 
overcome when it was realised that in most estimates we do not necessarily need the 
complete array of all values of joint distribution. When estimating the probability of 
some situation we only need to know the context dependent probabilities for that 
situation. In other words, we only need to know the conditional probabilities of the 
situation in question with respect to the causes that directly influence the situation. 
Fortunately probability theory has a unique ability to process context sensitive beliefs. 
Furthermore, context dependency or more to the point context independency can be 
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represented by graphs and manipulated by local propagation [Pearl 1988]. This is 
precisely what Bayesian networks do thereby making probabilistic modelling 
computationally feasible. 

Given any C3I problem we start by building a Bayesian network that represents the 
uncertainties in that problem. The required probabilistic model then emerges from the 
network. We explain this in a easy to understand fashion in Appendix B. Readers 
familiar with Bayesian network may proceed directly to the next section. 

2. Situation Assessment with Bayesian Networks 

The art of decision making under uncertainty is essentially the art of situation 
assessment when data are lacking [Discenza]. If the true situation can be ascertained, 
deciding upon an action would essentially be mechanical. In its bare essentials, 
situation assessment consists of integrating information from different parts and 
different elements of the battlefield to form the current total picture, and predict future 
trends. The challenge of making global assessments from local information is of course 
the most difficult part of the process. There are few commonly agreed upon procedures 
for such integration, different experts adopt different methods depending upon their 
experience and personal reasoning process. Situation assessment therefore contains a 
large component of subjective judgement. As Bayesian networks are particularly good 
at capturing subjective judgements, they provide a unique tool for modelling this 
process. 

Chang [Chang 94] considers the problem of multiple intelligence correlation and fusion 
using Bayesian network in order to identify enemy targets and infer about their 
mission. He acquires domain knowledge for the ground tactical scenario with ELINT 
and COMINT sensors, and the constructed Bayesian network models the 
characteristics of the intelligence data. A Bayesian network inference algorithm is 
provided. Results for a test scenario are also documented to illustrate the data fusion. 
Discenza [Discenza] combines reconnaissance information, both from direct 
observations and failures to detect, regarding individual units in the battlefield. Bayes 
rule supported by Monte-Carlo motion models is used for updating individual unit's 
position and its probable track. These Bayesian updates are then used to determine a 
posteriori probabilities for alternate enemy courses of action. 

2.1 Multi-Stage Decision Making 

We view decision making as essentially a multi stage process. Any stage of decision 
making starts with the input which are observational data collected from diverse 
sources. These information sources can be a series of sensors using electromagnetic or 
sound waves. They can also be direct observations of the enemy obtained through 
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reconnaissance missions. The information may include; reports of target detection, its 
mobility and its activities like communication, EW, or weapon launch etc. 

The gathered information is then fused to minimise noise in the information and to get 
the best possible appreciation of the physical and behavioural aspects of the enemy. 
Essentially these would involve, estimating location, tracking and discrimination 
between various enemy elements, and finding out the activities they are engaged in. 

With the state of the enemy thus appraised, an assessment of the situation is next 
conducted, which among other aspects involves assessing enemy intention, the level of 
threat it poses, and predicting its future behaviour. The decision maker is now in a 
position to weigh the appropriateness of alternate courses of action and decide upon 
one - and the cycle starts again [Wohl 1981; Waltz and Buede 1986]. 

2.2 Generating Hypothesis 

As indicated above, the multistage decision process starts with the arrival of initial 
stimuli in the form of intelligence reports about enemy activity. A set of hypotheses are 
then formed to make out what the enemy might do - its intention. Assessing enemy 
intention involves understanding enemy plan of action, and the knowledge 
requirement for anticipating enemy plans is tremendous. Even when one has an 
accumulation of sufficient prior intelligence, the process of representing this 
knowledge and reasoning about them is rather difficult. In fact, this will involve 
having at hand a database that records patterns of enemy past behaviour, plus an 
analysis of enemy warfare doctrine, and an understanding of various operational 
procedures. One should then be able to deduce a pattern from the current set of 
activities, and match the current pattern with past patterns of activity and operational 
procedures. The problem of hypothesis generation and assigning prior probabilities to 
the hypotheses are considered with respect to a given scenario by Laskey et al. [Laskey 
1994]. They then use Bayesian networks to construct probabilistic models to assist an 
intelligence analyst in evaluating how well various hypotheses about the adversary's 
intentions are supported by available evidence. For the purpose of this analysis we 
assume that the hypotheses generation has been done externally and a set of initial 
hypotheses are available for starting the situation assessment process. 

Hypotheses representing enemy intent are not directly observable entities. Therefore, a 
set of information variables have to be devised which can be observed and which will 
provide sufficient details to assign likelihoods to the set of hypotheses. The commander 
then directs the sensors and other intelligence gathering agencies to gather information 
regarding these information variables. 
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2.2.1 Incompleteness of Hypothesis Set 

An important problem relates to the fact that it is impossible to generate a complete set 
of hypotheses, a set that exhausts all enemy options. For this reason we add the 'not 
modelled' hypothesis to our set of hypotheses. This allows for the possibility that the 
true enemy intent has not been fathomed and in general this hypothesis should be 
endowed with a low value of probability at the outset. If during the course of situation 
assessment the posterior probability of the not modelled hypothesis grows large then we 
infer that "we do not know" what the enemy is doing. A new set of hypotheses must 
be generated and the analysis reworked. 

2.3 Constructing a network 

With the hypothesis and information variables thus formulated a Bayesian network 
can now be constructed. The root node of such a network would contain the hypothesis 
variable whose states corresponds to possible enemy intent. The information variables 
occupy the lowest level nodes; nodes that do not have any children. In general a 
network will have a number of intermediate nodes. The hypothesis node is causally 
linked to the information nodes through these intermediate nodes. The nodes and the 
links should reflect the causal structure and context independencies pertaining to the 
situation assessment task at hand. These concepts are explained in appendix B and will 
become clear when we construct illustrative networks below. Evidence regarding 
information variables is gathered through sensors. The information from this evidence 
propagates against the links of the network to update the probability distribution over 
the hypothesis variable. The causal structure of the network therefore encapsulates the 
reasoning process that the user employs to reason about the likelihood of any 
hypothesis state given the current nature of evidence. 

2.3.1 Generating Conditional Probabilities 

The bunch of parent to child links in the network contain the conditional probabilities 
P(c I pi,p2,. ■ ■ ,pn) - this gives the probability of observing the child in state c, given that 
the n parents are in states pi, pi, ... ,pn respectively. How would one generate these 
conditional probabilities? We stipulate that these be gleaned from the commander's 
subjective knowledge, by some process of querying his or her beliefs. Essentially we 
are advocating that the commander's cognitive process, rather than an algorithmic rule 
based process which form the basis of all expert systems, be used to produce the 
conditional probability table. The commanders are very capable experts with 
considerable experience. While forming a judgement they can pick and bring together the 
pertinent facts along with the past experiences that are of relevance. There are no 
difficulties in creating a database that can store all the necessary facts, together with a rule 
base that encapsulates the collective wisdom of various commanders. But there may not 
exist an algorithm that is capable of extracting what is needed from the morass of data 
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and producing the appropriate inference. Even when one is found it may not be practical. 
In fact according to Moffat [Moffat 98] such an approach often produces very complex 
models which are difficult to understand and slow in running. 

The problem of modelling a commander's intuitive knowledge and generating useful 
information from this model to enable one to construct a network is a difficult problem. 
A starting point for research in this direction can be the naturalistic decision making 
models proposed by Klien and others [Zsambok and Klien 1997]. Here we assume that 
the commanders subjective knowledge has been quantified to generate the conditional 
probability tables required by the network. 

2.4 Input into a Network 

A Bayesian network accepts evidence in two distinct categories: 

• Evidence that sets the prior probability distribution over the hypothesis variables. 
Such evidence is therefore injected through the hypothesis variable and travels 
along the links of the network to set the prior probabilities of all other variable. 

• Evidence regarding the information variable. These are injected through the 
information variables and travel against the links to update the prior probabilities 
to posterior probabilities according to Bayes rule. 

2.4.1 Generating Prior Probabilities 

Every stage of situation assessment requires assigning prior probabilities to the 
hypotheses. These prior probabilities are obtained from a knowledge of the prevailing 
situation. This problem of converting a state of knowledge to a probability assignment is 
a problem that lies at the heart of Bayesian probability theory. When the prior 
information can be given a precise mathematical formulation it is often possible to 
prescribe a set of rules for converting the information to a probability assignment. The 
general problem, however, is far from being solved and continues to be a field for 
continuing research [Bernardo and Smith 1994]. We shall assume that there exist 
external modules which convert the current state of knowledge to a prior probability 
distribution over the hypothesis variable. 

2.4.2 Evidence for Updating to Posterior Probabilities 

As discussed above, evidence pertaining to information variables is used for belief 
updating. Such evidence is gathered through surveillance and reconnaissance. It is 
always preferable to use more than one sensor in the information gathering process, for 
there are fundamental limitations on any attempt at situation assessment based on the 
observations of a single sensor [Durrant-Whyte 1991]: 
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• Single sensors can only provide partial information about the situation being 
monitored. 

• There is no way of reducing noise related uncertainty or testing observations for 
errors. 

• Different sensors can provide qualitatively different observations which would be 
useful to tackle different situations, no single sensor can provide observations that 
can cover all eventualities. 

• Single sensor systems are not robust as a failure of the sensor will result in 
complete system failure. 

It is therefore an accepted paradigm in military command and control situations to 
integrate information obtained from a number of geometrically, geographically and 
physically diverse sensors to overcome the limitations inherent in the use of single 
sensors. The potential advantages of integrating information from multiple sources are 
many, we will not list these but direct the reader to appropriate references [Luo and 
Kay, 1989, Waltz and Buede 1986,]. However, it is worth mentioning two very 
fundamental advantages viz. redundancy and complementarity [Luo and Kay, 1989] as 
these form a part of the guiding principles in what follows. 

When a number of sensors detect the same feature of the target, possibly with different 
fidelity, we say that the collected information has redundancy. Integration of 
redundant information reduces overall uncertainty. Furthermore, a system capable of 
accumulating redundant information will not be drastically paralysed owing to 
accidental failures of any particular sensor. 

Collecting complementary information, on the other hand, implies collecting 
qualitatively different information regarding the enemy. Integration of such 
information provides a holistic appreciation of the environment. Although redundancy 
is desirable when the goal is the reliable estimation of a certain parameter, 
complementarity is useful in performing global assessments. 

Bayesian networks, since their inception, have shown great promise in performing 
multisensor data fusion [Waltz and Llinas 1990]. We will illustrate both the above types 
of integration in the illustrative network that we construct for situation assessment. We 
assume that there are external modules which receive sensor data and make the data 
available as input evidence to the network. 
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2.5 A Scenario for Naval Anti Surface Warfare 

To endow the analysis with a degree of concreteness, we construct a scenario of naval 
anti-surface warfare. This scenario is based upon operation Dardanelles; an approved 
naval exercise [ANZAC scenario 1997]. The situation assessment is then undertaken 
with respect to this scenario. 

\fiz&- /: :L"^ # 
Restricted Zone 

Surveillance Sensors 

Supply Route 

■15 

■jMl 

Figure 2.1. Map showing the restricted zone, supply route, and the position of surveillance 
facilities. 

The scenario (Figure 2.1) develops during a period of developing hostility between 
Blue and Orange forces. From intelligence gathered during early stages of conflict it is 
apparent that the enemy military commanders view the communications and 
surveillance facilities of the Blue forces, based somewhere on the northern coast, as a 
significant target. These facilities are able to observe supply routes through which the 
Orange forces get fuel supply from a neighbouring country with which it has recently 
signed a secret defence pact disguised as a trade pact. This third country is to be 
treated as neutral and Blue forces will not open fire on its tankers. As the situation 
worsens the Blue forces designate an area covering land and sea bounded by some grid 
points XXX, and containing the communications facilities, as a restricted zone. The 
friendly government has indicated that any military activity or any supply transported 
through the designated area that fosters military activity will be treated as hostile 
activity. The fuel supply is vital to all enemy future plans, the Orange forces would 
therefore like to defend the supply route that pass through the restricted zone. It would 
also like to destroy the surveillance facilities but that would be attempted only when 
hostilities break out openly. 
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HMAS ANZAC is assigned to take command of a Blue task force in detecting, tracking 
and attacking if necessary all enemy surface units in the restricted zone. The Officer in 
Tactical Command (OTC) is the Commanding Officer, HMAS ANZAC. 

The following constitute the Blue task force 
• HMAS ANZAC 
• One Patrol Boat FCBP 
• One Maritime Patrol Aircraft (MPA) 
• One Helicopter 
• One Fill (Maritime strike aircraft) 

Initial intelligence suggests that the orange forces would use one or more of the 
following surface crafts for intrusion into the restricted zone. 
• A major fleet unit; a MOD KASHIN FFG 
• One Patrol Boat 
• A communication ship 
In addition, neutral supply vessels are expected to attempt passing through the 
restricted zone. 

Rules of engagement for HMAS ANZAC will be along the following lines. Initiate 
action to detect any Orange surface unit or neutral tankers, inside the restricted zone 
using MPA, Helicopter and own sensors. Also use third party information received 
from offshore surveillance facilities. Once detected conduct continuous tracking using 
MPA, Helicopter, etc. ensuring that the tracking units are outside enemy fire range. 
Provide enemy unit(s) coordinates to other units in the Blue task force. In particular, 
provide targeting information to Blue Maritime Strike Aircraft (MSA) Fill. If a tanker 
belonging to the neutral country is detected in the restricted zone, intercept it and send 
it back to the port of origin. If Orange surface units are detected then inform Joint 
Operation Room (JOR) of the situation. Attack only when directed by the MHQAUST 
from the JOR. When an attack becomes necessary coordinate attack with other Blue 
units. CO HMAS ANZAC is to pursue attack until the expected probability of kill is 
achieved. 

Intelligence suggests that the Orange forces course of action will be along the following 
lines. At the outset Orange forces would prefer to get the supply ships through the 
restricted zone undetected. If the ships get detected the Orange forces will wait until 
the Blue forces take any action. They have correctly inferred that Blue forces will be 
reluctant to attack a neutral country's tankers. In case there is a build up of Blue forces 
or the supply tankers get sent back, the Orange forces will actively defend the supply 
route. If the hostilities escalate or if the Orange force commanders perceive that the 
Blue surveillance facilities pose a significant threat to overall Orange war activity they 
will mount an attack on the Blue task force with the ultimate aim of destroying the 
facilities. 

10 
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2.6 An Illustrative Bayesian Network 

We now construct a Bayesian network (Figure 2.2) to assess a variety of situations as 
are likely to be generated by the scenario constructed above. First of all we decide upon 
a set of hypotheses that adequately represents possible enemy intentions. Assume that 
intelligence gathered so far and an analysis of the pattern of Orange forces past 
behaviour provides us with the following set options: 

• Passive: Maintain remote surveillance of the restricted zone with sensor 
platforms that are well out of range of Blue fire power. Ask the neutral country 
to commence fuel supply and assume that Blue forces will not interfere with the 
activities of an apparently neutral country. 

• Defensive: Conduct active reconnaissance and maintain a defensive presence to 
guard the supply routes against Blue forces interference. 

• Offensive: Mount naval attack on Blue surface units with the intention of 
neutralising them and destroying Blue offshore surveillance facilities. 

• Not Modelled: Other possible enemy options not covered above. 

Enemy intention directly influences enemy activity, this can take one of the following 
forms: 

Enemy activities: 
• Logistics - procuring fuel supply from the neutral country. 
• Reconnaissance of the restricted zone. 
• Conducting EW 
• Securing supply route 
• Mounting naval attack 
• Inactive when severely damaged 

The enemy surface units likely to be deployed are detailed in the scenario. We add the 
supply tankers from the neutral country to that list. 

Identification of the enemy unit and gathering information about its activity is 
achieved by surveillance through a number of sensors and reconnaissance. These 
information gathering devices observe the following information variables: 

Enemy Vessel Type: 
• FFG 
• FCPB 
• Communication vessel 
• Oil Tanker 
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Position of the enemy unit: 
• Outside the restricted zone 
• Near the boundary of the zone 
• Near supply route 
• Well forward 

Mobility of the enemy unit: 
• Immobile 
• Slow parallel (parallel to the northern boundary of the restricted zone) 
• Slow forward 
• Slow backward 
• Rapid parallel 
• Rapid forward 
• Rapid backward 

Communication activities of enemy unit: 
• Maintaining radio silence 
• Communicating with base 
• Jamming (EW) 

Evidence to the network is supplied through the sensor and reconnaissance nodes. For 
example, the evidence regarding the position of enemy unit is supplied through the 
nodes Sensor Position Int and Recon Position Int. Here we have assumed that there is 
only one sensor unit and one reconnaissance unit to detect enemy position; a greater 
number of units would be represented by additional nodes of similar nature. The links 
from the position node to the corresponding sensor and reconnaissance nodes capture the 
confidence that the analyst places on the reliability of these detection units. If the 
sensor unit detects the enemy near the supply route, the sensor node is instantiated to this 
state. The network utilises this evidence to update the probability distribution over the 
states of the position node. This updated distribution will not necessarily assign a value 
100 to the state near the supply route in the position node. 

As shown in Figure 2.2, the parameters vessel type, position and mobility are each 
detected through sensors and reconnaissance. The collected information therefore has 
redundancy. The network integrates the redundant information for each of the above 
parameters to reduce the overall uncertainty in information gathering. If the nodes 
Sensor Position Int and Recon Position Int provide conflicting information, the network 
utilises the conditional probabilities attached to the links from the position node to these 
nodes to integrate the information and work out a probability distribution over the 
states of the position node. 

The network also integrates complimentary information. For example the state of 
activity is determined by integrating information regarding vessel type, communication 
activity, position and mobility. 
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Depending upon the state of enemy intention and its activity the network provides a 
probability distribution over possible courses of action - Blue Courses of Action: 

• Dispatch patrol boat to intercept neutral vessel 
• Dispatch Fill for small scale attack 
• Mount full scale attack with HMAS ANZAC and Fl 11 

This is in addition to surveillance, reconnaissance and communication with JOR and 
other Blue units that would continue to be carried out routinely. 

2.6.1 A Bayesian Network for Situation Assessment 

The following Bayesian network was constructed using NETICA [Netica 1998]. In 
Appendix C we demonstrate the use of this Bayesian network in belief updating for a 
developing situation. 

Enemy Intention 

Passive 25.0 
Defensive 25.0 
Offensive 25.0 
Not Modelled 25.0 

Vessel Type 

FFG 25.0 
FCPB 25.0 
Comm Ship 25.0 
Tanker 25.0 

Activity 

Logistics 
Reconn 
EW 
Route Defence 
Attack 
Inactive 

16.7 
16.7 
16.7 
16.7 
16.7 
16.7 

Comm Activity 

Radio Silence 
Comm with b... 
Jamming 

33.3 
33.3 
33.3 

Position 

Outside Zone 
At Boundary 
Near supply... 
Well forward 

25.0 
25.0 
25.0 
25.0 

Sensor Identification 

FFG 25.0 
FCPB 25.0 
Comm Ship 25.0 
Tanker 25.0 

Sensor Comm Int 

Radio Silence 33.3 
Comm with b... 33.3 
Jamming 33.3 

Sensor Position Int 

Outside Zone 
At Boundary 
Near supply... 
We'll forward' 

25.0 
25.0 
25.0 
25.0 

Recon Identification 

FFG 25.0 
FCPB 25.0 
Comm Ship 25.0 
Tanker 25.0 

-Recon Position Int 

Outside Zone 25.0 
At Boundary 25.0 
Near supply... 25.0 
Well forward 25.0 

Blue COA 

Routine Action 20.0 
Interception      20.0 
Minor Offensive 20.0 
Major Offensive 20.0 
Not Known       20.0 ■I-*.?-i'V . . 

Mobility 

Immobile         14.3 a,. 

Slow parallel    14.3 
Slow forward     14.3 .;, 
Slow backward 14.3 \-, 
Rapid parallel   14.3 Ä •■ 
Rapid forward    14.3 
Rapid backw... 14.3 

Recon Mobility Int 

Immobile        14.3 
Slow parallel    14.3 
Slow forward     14.3 
Slow backward 14.3 
Rapid parallel   14.3 
Rapid forward    14.3 
Rapid backw... 14.3 

-   Sensor Mobility Int 

Immobile        14.3 
Slow parallel     14.3 
Slow forward     14.3 
älow backwa'rd 14.3 
Rapid parallel   14.3 
Rapid forward   14.3 
Rapid backw... 14.3 

Figure 2.2. A Bayesian network for situation assessment. 
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3. Measures of Uncertainty and its Flow in a Bayesian 
Network 

As the preceding section illustrates, a Bayesian network is primarily used to update the 
probability distribution over the states of a hypothesis variable; a variable which is not 
directly observable. This probability distribution then helps a decision maker in 
deciding upon an appropriate course of action. The question now arises as to how 
effective is such a process. In particular it would be useful to be able to answer the 
following: 

• Every act of information gathering consumes some amount of resources. One can 
therefore ask if a particular stage of hypothesis updating was worth the amount of 
resources spent in information gathering for that stage. 

• With respect to a particular Bayesian network how effective is a particular 
information gathering device? 

• Further, a Bayesian network is nothing but a tool in aid of decision making. Given a 
situation and a corresponding Bayesian network, how effective is this network as a 
decision aid tool; does it remain effective as the situation changes with time? 

A complete answer to the above questions and the related ones that will crop up once 
we start probing, is beyond the scope of this present work. What we propose to do is 
establish a methodology that can be used to find the answers. To show that the 
methodology actually works we will then find some initial answers and compute a few 
measures that will be sufficient for the present. 

3.1 A Measure of Uncertainty 

To answer questions regarding effectiveness, the central theme to bear in mind is that 
the uncertainties that reside in various variables taken individually or taken in groups 
form key factors influencing any decision making exercise. The first thing to do would 
therefore be to fix a measure of uncertainty associated with any random variable. 

Let X be a discrete random variable taking the values {xi,..., x„) with probabilities 
P(X=xJ = P(xi). We have all along stressed the point of view that our interpretation of 
the probability here is the subjective or the Bayesian interpretation. This holds that a 
probability measure is a measure of our belief based on our current state of knowledge. 
The variable X will assume one of the n alternative values {xi ..., x„}, if the 
corresponding experiment were performed. We do not know exactly which alternative 
will materialise, our knowledge only provides us with a measure that x, will occur with 
the likelihood P(xt). In a sense, this probability distribution is a measure of our current 
knowledge, the knowledge that was used to assign the probabilities in the first place. 
However this knowledge is not enough to pin down that particular alternative which 
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will materialise when the experiment is performed. This corresponds to our current 
uncertainty. 

A measure of the amount of current uncertainty is a measure of the amount of information 
that would be required in addition to the current knoivledge to specify which particular 
alternative will occur. 

Equivalently, a measure of our current uncertainty is a measure of the amount of 
information that will be acquired when one performs the experiment and determines 
the particular alternative. Hence a measure of uncertainty would be determined by the 
number of available alternatives and the probability distribution P(-). If we further 
stipulate that the measure of uncertainty be given by the logarithmic measure of the 
number of alternatives then it can be shown that (Caves and Fuchs 1996) the average 
uncertainty associated with the random variable X is given by 

H(X) = -£p(x,.)logP(xI.) (3.1) 
;=i 

This is just the Shannon entropy of the random variable X. If we use logarithms to 
base 2, as we shall in all our considerations henceforth, the unit of entropy will be a bit. 
It measures the average information required in addition to the current knowledge to 
specify a particular alternative. If our current state of knowledge is complete, i.e. if we 
know that X will assume the value x\, say, then P(xi) = 1 and it follows that H(X) = 0. If 
our current state of knowledge is total ignorance then we will not be able to distinguish 
between various alternatives, this leads to the uniform probability distribution 
P(xi) - 1/n. In this case, the additional information required to pin down an alternative 
will be maximum. This is precisely what happens when we evaluate H(X) with 
uniform distribution, it takes the value logn the maximum possible value. In general 
therefore, H(X) provides a measure of the amount of information required to remove 
the ignorance expressed by the probability distribution P(xi). 

In the analysis that follows it would sometimes be useful to adopt another equivalent 
interpretation. We can view H(X) as a measure of the spread of the probability 
distribution P(xJ. In this respect the entropy plays a role similar to the concept of 
variance in statistics. However, in many respects H(X) is a superior measure of the 
spread. Variance can only be defined if the values {xi,..., x„} assumed by X are real 
numbers. This is far too restrictive for our purpose, where X may stand for enemy 
intention taking values from the set { offensive, defensive, logistics etc.}. H(X) as a measure 
of the spread is unencumbered by the intrinsic nature of X, its only dependence is on 
the probability distribution and therefore reflects the spread more faithfully. 

Normally, one studies the propagation of evidence as it ascends from the information 
variables to the hypothesis variables, higher up in the causal link, in any Bayesian 
network. Essentially therefore, the network is viewed as an information channel. We 
want to obtain a better understanding of this flow of information, and the strategy 
adopted for this is very simple - apply the concepts and results from information 
theory to Bayesian networks. The necessary material from information theory can be 
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found in any standard text [eg., Cover and Thomas 1991 - will henceforward be 
referred to as CT], and we start with a few definitions. 

Joint Entropy 

Let X and Y be two random variables with a joint distribution given by P(x,y). 
The joint entropy H(X,Y) is given by 

H(X,Y) = -JjJjP(xt,yj)\ogP(xi,yj) (3.2) 
'    / 

Conditional Entropy 

Let X and Y be two random variables. The conditional entropy H(X I yt) of X 
given that Y has assumed the value y; is given by 

H(X I yy) = -£P(x,. I y,)logP(x,. I Vj) (33) 

The conditional entropy H(X I Y) of X with respect to Y is the expected value of 
the measure of uncertainty in X when it is known that Y has a particular value. 
Hence clearly it has the following form. 

H(X i Y)=J^p(yj)H(x i y/)=-5>(y,)Zp(*.' i/i)i°&p(xi' yy) <3-4> 
/ i '' 

H(X I Y) quantifies, on the average, the remaining uncertainty regarding X when 
it is known that Y has assumed a certain value. 

3.1.1 Information Equivalence of Bayes Theorem 

Since evidence propagates along the network. according to the dictates of Bayes 
theorem, let us first derive a result that has the same meaning for entropy as Bayes 
theorem has for probability. The joint probability H(X,Y) for two random variables X 
and Y can be shown to satisfy the relationship [CT] 

H(X,Y) = H(X I y; + H(Y). (3.5) 

From the commutative property of logic it follows that the conjunction X and Y is 
equivalent to the conjunction Y and X. Hence H(X,Y) = H(Y,X), thus we conclude: 

H(X\Y) = H(Y\X) + H(X)-H(Y) (3.6) 
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Following Bayesian tradition, we say that H(X) represents the initial or prior 
uncertainty in X, i.e. the uncertainty in our knowledge about X when no other 
information is available. While H(X I Y) represents the updated or posterior uncertainty, 
i.e. the average remaining uncertainty in X when we have evidence in hand that Y has 
assumed a certain value. Equation (3.6) therefore shows the relation between the prior 
entropy and the posterior entropy. Further it can be proved that [CT] 

H(X)>H(X\Y), (3.7) 

with equality if and only if X and Y are independent. Hence belief updating decreases 
entropy, on the average, a conclusion in keeping with the trends of Bayesian analysis. 
This also reassures us that our choice of measure is an appropriate one. 

3.2 Effect of Evidence on Hypothesis in a Bayesian network 

An important point that must be kept in mind is that the reduction in entropy as 
mentioned in (3.7) is true only on the average. Like all averages this glosses over a very 
significant fact which is the following: if the random variable Y is known to have 
assumed a particular value y then the conditional entropy H(X I Y-y) will not always be 
less than H(X), it may at times be greater than H(X). In other words, arrival of some 
particular new information can sometimes increase the uncertainty (in situation 
assessment for example) - although, on the average information always reduces 
uncertainty. 

Consider a Bayesian network and let X with values {xi,...xn} be a hypothesis variable 
while E = {ei,...ei\ be an information variable. If now information arrives that E has 
been found to be in the state corresponding to ei, then this propagates through the 
network and changes the probability distribution of X to P(xt I ei). The entropy of the 
hypothesis variable now becomes H(X\ei). Now whether this posterior entropy is 
greater than, or equal to, or less than the prior entropy H(X) depends upon the 
following two factors: 

1. The prior probabilities P(xi) 

2. The knowledge stored in the links of the network in terms of the conditional 
probabilities. These conditional probabilities govern the reasoning systen\,that the 
network utilises to derive inferences. 

We are interested in finding out how effective the network's reasoning system is in 
employing evidence to reduce uncertainty. To do this, the effects of the prior 
probabilities must first be decoupled from the effects of the reasoning system. We 
adopt the following simple but very effective strategy for this. We assume that we have 
no prior knowledge of the hypothesis variable, and then examine the capacity of the 
evidence to reduce this total ignorance or maximum uncertainty. 
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If nothing is known about the hypothesis X with values (xh.. .,x„}, then according to the 
principle of maximum entropy [Jaynes 1988] we must have P(xt) = 1/n for all i and the 
prior entropy would be H(X) = logn. When the evidence that E has been found to be in 
the state ei arrives, this entropy gets reduced by an amount 

logn -H(X \ ei) (3.8) 

In (3.8) the posterior probabilities Pfc I ei) are calculated using the prior probabilities 
P(xi) = 1/n for all i. Furthermore, since logn is the maximum entropy possible for X the 
expression in (3.8) is always positive. We therefore call the expression in (3.8) the 
uncertainty reducing capacity of the evidence 'E is in state e{. If {ei, £2,...,£s) are a set of 
evidence obtained through various sources then we can use the above formalism to 
calculate the uncertainty reducing capacity of the set as logn - H(X\£i, £2,...,Es). 
Moreover this expression can be used to compare the uncertainty reducing capacity of 
different sets of evidence. 

The question now arises as to how would one calculate the uncertainty reducing 
capacity of some evidence using a Bayesian network. The following three cases arise: 

(a) First suppose that the hypothesis variable X is a root node. We assign a probability 
distribution to X such that all its possible values are equally probable; we do the 
same to all other root nodes. After the network has reached an equilibrium with 
these initial conditions we instantiate one or more information variables to their 
corresponding evidence values. The posterior probabilities P(XJ\EI, £2,-■-,£$) get 
calculated when the network reaches equilibrium again and we use these to 
calculate the uncertainty reducing capacity of the evidence. 

(b) If the hypothesis variable X is not a root node then we delete from the network the 
parents of X and carry out the process described in (a). 

(c) It may also happen that an evidence variable influences X through one of its 
parents Y say. In such cases deleting the parents will render the evidence and 
hypothesis disconnected. Since the evidence has direct influence on Y and only 
indirect influence on X, we treat Y as the primary hypothesis and fix its prior 
probabilities instead. In other words, if Y is a root node then we make all its 
possible states equally likely as in (a) and if Y is not a root node we make it one in 
the manner discussed in (b). Since Y is a parent of X fixing prior probabilities of Y 
would automatically fix the prior probabilities of X. 

Appendix D.l illustrates these calculations with an example. 

Finally the average effect of any evidence variable E on a hypothesis variable X can be 
calculated by instantiating E to each of its possible values successively and propagating 
the effects to X. This will allow us to calculate H(X\E) using (3.4) leading to the 
average uncertainty reducing capacity of £ which is (logn - H(X I E)). 
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3.3 Effect of belief updating 

Although reduction of uncertainty is the primary motivation for gathering information, 
there are other subtle features of updated information that play a crucial role while 
deciding upon a subsequent course of action. Consider again the hypothesis variable X 
which models various states of some situation. If the probability distribution is such 
that P(xi) is very near to 2 for some x, then we know with reasonable confidence that 
the state of the situation is given by xu This is however rarely the case. When the 
probability distribution is spread out over many states of the hypothesis, it is the 
nature of the spread, or the form of the probability distribution function P that is very 
important. The form of P dictates our belief regarding the peculiarities of the situation 
being observed. In a dynamic environment the nature of the situation would change 
with time. Our observations may never give us an exact description of the situation but 
the sequence of probability distributions we obtain, as we go on updating information, 
should inform us how the situation is changing. 

To formulate the above considerations quantitatively, consider the following 
development. Suppose at time h the probability distribution over the hypothesis X is 
Pi. A batch of sensor observations arrives at a subsequent time h leading to a new 
distribution P2; let us assume that the updated information faithfully captures the 
change in the situation. We now ask - what would be the inefficiency in the decision 
making process if the information had not been updated? With no update all decisions 
at time tz would be based on the perceived distribution Pi. Since the actual distribution 
is P2 the uncertainty in our perception would be given by, -\P2(xi)\ogP1(xi). This is 

different from     -^P2(x1-)logP2(jt,-)   which would measure the uncertainty if our 

perceptions were based on the updated information. Hence the increase in uncertainty 
due to outdated perception is given by 

-^PiixJlogPfa) +y£P2(xi)logP2(xl) (3.9) 

What we have obtained is the Kullback distance between the distributions P2 and Pi 
which is generally denoted by D(P2|P1). It can be shown that D(P2|P1) is always 
positive [CT], and this is very interesting - for the amount of uncertainty associated 
with the updated distribution P2 may actually be greater than the amount of 
uncertainty associated with the previous distribution Pi. In other words obtaining new 
evidence may not necessarily decrease uncertainty, as we have said before, but not 
updating information is always inefficient. D(P2 |P[) therefore correctly measures the 

worth of the updated information. The amount of resources spent in reconnaissance 
and surveillance must therefore be weighed against the value of D(P2|P1) to determine 

their effectiveness. 
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In Appendix D.2 we give an example and calculate D(P2|P1) for a stage of situation 

assessment using the Bayesian network to update probabilities. 

3.4 Sensor Effectiveness 

To analyse how the reliability of information gathering devices affect the process of 
inference making in a Bayesian network, we first define the concept of mutual 
information [CT]. 

Mutual Information 

Given two random variables X and Y, the mutual information I(X;Y) is defined 
as 

W^^^gL ,3.0) 

It can be shown that 

I(X;Y) = I(Y;X) and (3.11) 
I(X;Y) = H(X) - H(X I Y) = H(Y) - H(Y IX) (3.12) 

The mutual information I(X;Y) is a measure of the amount of information that Y 
contains about X. In other words I(X;Y) provides the uncertainty reducing 
capacity, on the average, of the random variable Y with respect to the 
uncertainties in X. 

Let us now consider the following simple formulation which captures all the essential 
factors required for an analysis of sensor effectiveness. 

® K2> KD 
Figure 3.1. A Bayesian network; X denotes hypothesis variable, Y denotes information 
variable and Z represents a sensor for obtaining information for Y. 

Here X is the hypothesis variable assuming values {xi,...x„}. This hypothesis is 
evaluated through information provided by the information variable Y. The variable Z 
represents a sensor which feeds information to the information variable. Y and Z have 
similar states as Z gathers information required by Y - for example in the case of the 
situation assessment Bayesian network depicted in Figure 2.2, Y can represent the 
position while Z represents sensor position int. Let us represent the values assumed by 
these variables as follows: 

Y:{yi,...,yd} 

Z:{zi,.../Zd} (3.13) 
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If Z were a perfect sensor then instantiating Z to z\ would imply that the information 
variable Y is in the corresponding state yi with probability 1. In general we have 

P(zi\yi) = Sij   i,j = l...d (3.14) 

The marginal probabilities P(y) and P(z) are therefore related as below 

P(Zi) = IW) (3-15) 

Hence for reliable sensors we must have very small values for §,- if i*j, and 5a very near 
d 

to 2, where 5Ü = 1 - ^T 5,^:. 
i=i 

For a perfect sensor we have 

$ = 0 if i*j 
= 1 ifi=j (3.16) 

In other words we consider the link between Y and Z as a noisy information channel. 
The noise factors are represented by the conditional probabilities Pfo I y). The other 
link between the variables X and Y quantified by the conditional probabilities P(yt I Xj) 
represents the knowledge for inference making about the hypothesis. 

If X has prior probabilities P(xt), the initial uncertainty in the hypothesis is given by 

H(X) = -V P(oc,-) log P(x,-). To calculate the uncertainty reducing potential of the sensor, 
i 

let us consider the case when the sensor indicates that Z has been found to be zs. The 
posterior uncertainty in the hypothesis now becomes 

H(X I zs) = -^P(Xi I zs)logP(x,. I z5) (3.17) 

Here 

P(x,lzs) 

J,P(Xi,yk,zs)    £P(zs I yk)P(yk I x,)P(*,) 
_    k 

P(zs) P(zs) 

^8skP(yk\Xl)P(Xi) 

(3.18) 

J,SskP(yk) 

For a perfect sensor using the properties (3.16) we get 

P(xi\z5) = ?^^ = P(xi\y5) (3.19) 
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Hence for perfect sensors we have 

H(X I Z) 

= -^P(zs)JjP(x,\z5)logP(xl\z5) 

(3.20) 
=-Sp(ys)Sp^|ys)iogp(x,-iys) 

S I 

= H(X IY) 

Now the average uncertainty reducing capacity of the sensor Z is given by I(X;Z). 
Using the independence property of the Bayesian network i.e. the property that X and 
Z are independent given Y it can be easily shown that 

I(X;Z)<I(X;Y). (3-21) 

However for a perfect sensor it follows from (3.20) that I(X;Z) = I(X;Y). In other words 
a perfect sensor will on the average reduce the uncertainties in X by an amount I(X;Y), 
as the reliability of the sensor decreases its uncertainty reducing capacity also decreases 
and the amount by which it decreases is given by 

I(X;Y)-I(X;Z). (3-22) 

We shall use the numerical value of expression in (3.22) to measure the efficiency of the 
sensor with regard to its uncertainty reducing capacity - the less the value is, the more 
effective is the sensor. 

The above analysis is easily generalised to any Bayesian network. Numerical 
calculations will proceed along the following two steps: 

i.   Fix the prior probabilities P(x<), by making X a root node as discussed in 
section 3.2. 

ii. To calculate I(X;Z) start by instantiating Z to its various possible states. The 
resulting probability distribution of X obtained for each instantiation would 
allow calculation of the conditional entropy H(X IZ). Formula (3.10) then gives 
I(X;Z). A similar procedure will compute I(X;Y). 

Appendix D.3 calculates the effectiveness of the position detecting sensor in relation to 
the hypothesis Enemy Intentions in the context of situation assessment. 
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3.5 Effectiveness of a Bayesian Network 

'Vn-r 

Figure 3.1. A general Bayesian network with one hypothesis variable and a number of 
information variables. 

Consider a general Bayesian network as shown above having n nodes. The root node 
Xj represents the hypothesis variable while the nodes with no children represent the 
r+1 information variables X„.r, ..., X„.i, X». The rest are intermediate nodes which help 
propagate evidence from the information variables to the hypothesis variable. Once the 
n nodes are fixed and all the links between the nodes are fixed, the network is 
structurally fixed. If we further specify all the conditional probabilities that quantify 
the links, then the network is functionally specified. The network can now be used to 
update the probability distribution function over the hypothesis variable when new 
evidence are injected through the information variable. 

A note on notations: suppose the random variable X* assumes values in the set 
{xk ,...,xk }\her\. for the sake of clarity in notation we will use -^P(xk)lo^P(xk) to 

denote H(Xk) where it is understood that the summation is over the values in the set 
{xh ,-,xkm}. 

The effectiveness of the network is determined by its ability to utilise information to 
update belief in the hypothesis. How well it performs this function, of course, depends 
upon the functional specification which specifies the degree of influence that the 
information  variables have  over  the  hypothesis variable.  Hence  a  measure  of 
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effectiveness can be obtained by obtaining a measure of this influence and the latter is 
measured by the mutual information function: 

l(Xi;X„, ..., Xn-r) = H(X«,...,    Xn-r) - H(Xn,..., Xn-r IX,) (3.23) 

To understand the nature of the mutual information we recall the fact that given two 
random variables X and Y the mutual information I(X;Y) is a concave function of Pfe) 
for fixed Pfc I y) [CT]; we here obtain a similar result for Bayesian networks of the type 
shown in figure 3.1. Let us examine the first term in the right hand side of (3.23): 

H(X„,...,X„_r) = -  J^P(xnl...,xn_r)\ogP(xn,...,xn_r) (3.24) 

Where the probabilities in (3.24) can be written as 

P{xn,...,Xn_r)=      Y,P(Xn->X2>Xl) 
xl'—fXn-r~l 

=    £P(x„ I paix^xPix^ I pa(xn_1))x-xP(x21 pa(x2))xP(Xl) 

(3.25) 

Here pa(Xi) denote the parent set of the node X, and we have used the conditional 
independencies inherent in the structure of the Bayesian network. As the conditional 
probabilities Pfo I pa(xi)) are fixed it follows that P(x„,.. .,x„.r) is a linear function of P(xi). 
Hence, H(X„,.. .,X„-r) which is a concave function of P(x„,.. .,xn-r) is a concave function of 
Pta). 

Further, the second term in the right hand side of (3.23) is 

H(X„ X„.r I Xx) = -XJW   £p(*" xn_r I Xl)\ogP(xn xn_r I xj (3.26) 

We have 
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P(*n Xn_r\xl)=
PiX"'-"'X"-'Xi) 

P(Xj) 

^P(xn,...,x2,xl) 

^P{x„\pa{xn))xP{x„_1\pa(xn_1))x-xP(x2\pa(x2))xP(x1) 
*2'-<*n-r-l 

P(*l) 

=    £P(x„ I pa(xn)) x P(x„_, I pa{xn_x))x • • • x P(x21 pa(x2)) 

(3.27) 

Hence P(x„,.. .,x„-r I xi) is fixed once all the conditional probabilities P(x, I pa(xt)) are fixed 
it follows from (3.26) that H(X„,.. .,X„-r I Xi) is a linear function of P(xi). 

I(Xt;X„, ..., Xn-r) is the difference between a concave function of P(xi) and a linear 
function of P(xi) and is therefore a concave function of P(xi). 

If the hypothesis variable admits h alternatives ie. Xi=   {xa   ,..., x1    }   then the 

probability distribution function P(xi) is given by the h numbers {P(Xj ),...,P(x1 )}. The 

set of all such probability distribution functions determine a h-1 dimensional simplex 
in Rh defined by the relations 

i. 0<P(xh)<l i = l,2,...,h (3.28) 

ii. f,P(xh) = l (3.29) 

I(Xi;X„, ..., X„.r) is a concave function defined over this simplex. Hence there exists a 
connected subset S of the simplex over which the mutual information is constant and 
this constant value is the global maximum; if S is a single point then I(Xi;X„, ..., Xn-r) 
attains the unique global maximum at this point. 

The prior probability distribution P(xi) over the hypothesis variable, at any stage of 
decision making, reflects the nature of the situation at that stage. As the situation 
changes the probability distribution varies over the simplex discussed above. What the 
conclusion reached above suggests is that if the situation is such that P(xi) belongs to 
the set S then the functionally specified network makes maximum utilisation of the 
information gathered. As P(xi) wonders out and recedes away from S reflecting a 
manner of evolution of the situation the ability of the network to exploit new evidence 
decreases. To bring back optimal performance one has to change the functional 
specifications so that with respect to the new network P(xi) is again a point within the 
corresponding set S or a point near the boundary of S. This change can involve either 
or both of the following: 

25 



DSTO-TR-0918 

i.   Change the set of observables so that the information gathered has a greater 
degree of relevance to the prevailing situation. 

ii.   Change the intermediate nodes and therefore the links in the network so that 
the channel of evidence propagation is more relevant to the prevailing situation 

The concavity of I(Xi;X„, ..., X„-r) is a very significant fact. It suggests that the network 
is most effective with respect to a unique situation or a set of situations, corresponding 
respectively to a unique point or a connected region in the probability simplex. Recall 
that we have always laid stress on the subjective nature of the network. The network 
reflects the personalistic reasoning process of a decision maker. We now answer the 
following crucial questions. Is this subjective process efficient and internally consistent? 
Given a hypothesis state, i.e. a situation, has the decision maker efficiently reasoned 
through the causal chain to identify the appropriate observables? He or she has, if the 
mutual information 7(X3;X„, ..., X„.r) attains its maximum at a point in the probability 
simplex close to the point representing the given situation. If on the other hand, these 
two points are far apart then the subjective process of obtaining the network has not been 
efficient and is possibly internally inconsistent. 

4. Conclusion 

The main driving force behind this work has been a desire to find suitable tools to 
model uncertainties in command and control. The graphical techniques of Bayesian 
networks, as we have demonstrated, provide a rich tool to comprehend and analyse 
uncertainties. The pictorial display of the model as a graph facilitates easy 
understanding and therefore would be of great help in rapid model development. 

The framework of Bayesian networks divides the model development process into two 
parts decoupling the qualitative aspects from the quantitative ones. This enables the 
user to first concentrate on building the causal structure of the network without 
worrying about the probabilistic aspects. All that is required is a clear understanding of 
the causes and their effects regarding the C3I problem under consideration, and this is 
what the commanders are good at. The next step is quantitative - assigning conditional 
probabilities to the links. In the section dealing with situation assessment we have 
advocated that the commander's perception or subjective knowledge of the situation be 
exploited to obtain the conditional probabilities, and as pointed out there, this is a 
problem requiring further research. 

Other aspects which require further research as discussed earlier are: 

• Given a real world scenario how to generate a set of hypotheses that capture 
possible enemy intentions and 

• How to obtain the prior probabilities to initiate the network? 
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The information theoretical techniques developed in section 3 to analyse the flow of 
uncertainty in a Bayesian network opens up a new line of research. We have 
demonstrated how these techniques can be used to answer various questions regarding 
effectiveness. However the trend of the analysis, in particular the concavity of the 
mutual information as proved in section 3.5, indicates that these techniques can also be 
fruitfully used to investigate problems related to learning. 

In a modelling and simulation environment, Bayesian networks need to be integrated 
with other simulation tools. Essentially this integration, as with all such integrations, 
should make it possible for the network to interact with other components of 
simulation i.e. access relevant data as input and produce probability distributions in a 
manner that can be accessed by other components. The input to a network will be in 
the following two forms: 

i.   prior probability distributions as input to all hypothesis variables or root nodes 
and 

ii.    data in the form of evidence as input to information variables. 

The output(s) are all the probability distributions over all the nodes. 

For example, the situation assessment network discussed before would require data 
regarding enemy position and mobility etc. from modules that simulate the physical 
environment. All the probability distributions produced by the network can be used by 
other modules which deal with one or other aspects of determining an appropriate 
course of action. 
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Appendix A: Bayesian Formalism 

A.l    The Interpretations of Probability 

Generally, different interpretations of fundamental scientific concepts rarely have any 
effect in the application of the corresponding scientific methods to real world 
problems. This is not the case when dealing with probability and statistics. Normally 
the differing interpretations do lead to identical results, however, it is not infrequent 
for them to yield mutually contradictory consequences [Chuaqui, 1991]. Here we 
briefly clarify these interpretational issues as it puts our endeavour in model building 
in proper perspective. 

The interpretation of probability becomes important when we want to apply 
probabilistic theory to events occurring in the real world: 

a. Given some event A what do we mean by the number P(A) and therefore how to 
determine this number. 

b. If we are given a number as the value of P(A) what do we understand it as and 
therefore how can we use this number to make predictions about the occurrence or 
non occurrence of the event A. 

Philosophers have long argued about the interpretation of the number representing the 
probability of an event, even when applied to mundane events that results from 
tossing a coin. Most workers adopt one of the following two interpretations [Fine, 1973; 
de Finetti, 1972] 

A. 1.1  The relative frequency or the objective interpretation 

The relative frequency approach is based on the following definition: 

The probability P(A) of an event A is given by 

P(A) = lim^- 

Here we make a series of trials. The number nA denotes the number of times the event 
A occurs in a series of n trials. 

This interpretation is based on our general conviction that for the real world 
phenomenon in question, the ratio njn does approach a limit when repeated trials are 
performed either sequentially or simultaneously and this limit remains the same when 
evaluated for any subsequence of the trials. 
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A. 1.2  The subjective interpretation 

In the subjective interpretation, the number P(A) is understood as a measure of our 
lack of knowledge or uncertainty about the occurrence or non occurrence of the event A 
in a single performance of the underlying experiment. We do not fully understand the 
phenomenon that gives rise to the event A, possibly because it is too complicated, and 
therefore are not sure if the event A will occur when a trial is performed. This 
ignorance is reflected in the number P(A). This notion of probability is therefore 
personalistic, it reflects the degree of belief of a particular person at a particular time. 
The subjective interpretation, unlike the relative frequency interpretation, does not 
prescribe a general set of procedures by which to determine the number P(A). This is 
rightly so, because in this interpretation probability is derived from a personal 
knowledge of the underlying phenomenon. Obtaining knowledge of some 
phenomenon is not a part of probabilistic considerations but possibly a part of physics 
or some other science. In most cases the aim is to obtain as much information about the 
underlying phenomenon as possible, then apply logical reasoning to arrive at a 
satisfactory number. 

Different interpretations of the concept of probability lead to different statistical 
techniques. In fact the modern statistical thinking can be categorised along the lines of 
three competing schools: Bayesian, frequentist and Fisherian [Efron, 78]. Those who 
adopt the subjective interpretation of probability are Bayesian while the adherents of 
the objective point of view are frequentists. Most statisticians that work in testing of 
hypotheses based on statistical data are frequentists while most of those who work 
with problems in decision making are Bayesian. In many ways the Bayesian and the 
frequentist techniques stand at opposite poles from each other, with Fisherian 
techniques being somewhat of a compromise [Efron, 98; Berger et al., 97]. 

A.2    The Bayesian Formalism 

The Bayesian formalism allows a decision maker to update his subjective belief when 
new facts are uncovered. The basic expression for conditional probability of an event A 
given an event B is given by the relation 

P(AIZ?)=^(M). 
P(B) 

Consider the joint probability P(A,B), from the commutative property of logic it follows 
that the two propositions 

(A,B) = A and B are both true 

(B,A) = B and A are both true 

are the same, and so they must have the same truth value and the same probability 
whatever our state of knowledge [Jaynes 1988]. Hence P(A,B) = P(B,A)- Applying this 
to the conditional probabilities we obtain the celebrated Bayes'formula 
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We can interpret this formula as follows: 

On the right hand side P(B) represents our initial belief that B will materialise, 
this is often termed the prior belief. P(A I B) represents the belief that some 
evidence A will be found once we have known that the event B has actually 
materialised, whereas P(A) represents our belief that A will be found to be true 
under general circumstances. 

P(B I A) represents our revised belief. The belief that B will occur or has 
occurred after we come to know that some evidence A supporting or denying B 
has been uncovered. This is called the posterior belief in B. 

Bayes' formula therefore gives us a definite procedure to update our belief. Our prior 
belief is updated to the posterior belief, after supporting evidence has been uncovered. 
What is more, anyone who reasons in a way that conflicts with Bayes' formula would 
then be violating a rather elementary principle of logic. This is no doubt a salutary 
thought. 
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Appendix B: Bayesian Networks 

A complete and rigorous definition of Bayesian networks can be found in some of the 
literature cited [Pearl 1988, Neapolitan 1990, Jensen 1996]. Here we will develop the 
concept with just enough rigour and detail that will enable us to apply these networks 
to C3I problems. For convenience we shall use slightly different but not contradictory 
notations in this appendix. Random variables are again denoted by X, Y, Z, ..., etc.- or 
by subscripted letters Xh X2, X3, ..., etc. The values taken by these variables are 
denoted by lower case letters x, y, z, ..., etc.- or correspondingly by xh x2, x3, ..., etc. If 
all the values that are possible for X lie in the domain Dx then x represents any element 
in Dx. Boldfaced capital letters X, Y, Z, etc. represent sets of random variables and 
assignment of values to these sets, also called configuration, is done through bolbfaced 
lowercase letters x, y, z, etc. For example if Z stands for the set {X, Y) then z represents 
the configuration \x, y\. P(Z=z) is equivalent to the joint distribution P(X=x, Y=y). We 
will use the short form P(z) and P(xry) to denote these probabilities instead. 

Let us pave the way by an example [Pearl 1998]. 

©CT ^G) ►© 

Figure B.l. An example of a Bayesian network 

Figure B.l is a simple Bayesian network. It describes the causal relationships among the 
season of the year (V), whether rain falls (X) during season, whether the sprinkler is on 
(Y) during that season, whether the pavement would get wet(Z), and whether the 
pavement would be slippery (W). A wet pavement will cause a slippery pavement; the 
arrow from Z to W represents this causal relationship. There are no direct connections 
between V and W, and this captures our understanding that the influence of seasonal 
variations on the slipperiness is mediated by other conditions. With this example in 
mind let us proceed with a semi formal definition. 

B.l     Causal Networks 

A Causal network is a directed acyclic graph (DAG), like one shown in figure B.l, in 
which the nodes represent the random variables of a probabilistic model and the 
directed links represent informational or causal dependencies among the variables. A 
parent in the network is deemed to be a cause influencing its children. The strength of 
the causal dependency is represented by conditional probabilities that are attached to 
each cluster of parent—>child links in the network. 
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In the case of Fig B.l the values P(z I x,y) - numbers giving conditional probabilities for 
all possible states of X, Y, and Z - quantify reasoning in the direction along the links 
from {X, Y) to Z. If we obtain evidence regarding cause {X, Y} then the conditional 
probabilities allow us to calculate the effect on Z. 

Reasoning in the direction opposite to the link is accomplished through Baye's rule, as 
will be shown later; evidence pertaining to the effect prompts an updating of belief 
regarding the cause. 

B.2     Conditional Independency 

Let 17 denote a finite set of discrete random variables. Let P( ■) be a joint probability 
function over the variables in U and let X, Y, and Z, stand for any three subsets of 
variables in U. X and Y are said to be conditionally independent given Z if 

P(x I y,z) = P(x I z) whenever P(y,z) > 0. 

We shall use the notation I(X,Z,Y) to denote the conditional independence of X and Y 
given Z 

B.2.1   Independency and separation 

Let us now examine the correspondence between the topology of a causal network and 
the independencies portrayed by it 

Serial Connections 

® +® KY) 

Figure B.2. Causal network with serial connections. 

In fig B.2 evidence regarding X will influence the knowledge about Z this in turn will 
influence the knowledge about Y. Similarly if we obtain evidence about the effect Y 
then our belief in its cause Z will be updated this in turn will affect our belief in the 
cause of Z which is X However if Z is instantiated then knowing the state of Z is 
enough to determine the probabilities of various states of Y, because of the conditional 
probability attached to the link Z->Y. Evidence regarding X will not be able to 
influence knowledge about Y any more. Similarly evidence about Y will be blocked by 
the instantiated Z and will not affect knowledge about X. We say that in the serial 
connection depicted in figure B.2 X and Y are separated by Z. 
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Diverging Connection 

Figure B.3. Causal network with diverging connections. 

In figure B.3 if we obtain evidence regarding the effect X then our knowledge about its 
cause Z will change. This will in turn influence our belief regarding the other effect of 
Z which is Y. However if Z is instantiated then knowing the state of Z is enough to 
determine the probabilities of various states of Y, because of the conditional probability 
attached to the link Z->Y and similar reasoning applies for X. Hence the effects X and 
Y become independent when Z is instantiated. We describe the situation by saying that 
in the diverging connection depicted in figure B.3, X and Y are separated by Z. 

Converging Connection 

Fig B.4. Causal network with converging connections. 

Reasoning about converging connections needs some care. Let us explain it through an 
example. In figure B.4, X represents the states head or tail of Coinl and Y represents 
similar states of Coin!. Z represents a bell which rings if in an experiment of tossing the 
coins both are found to have the same outcome. In general X and Y are independent. 
However, if the state of the bell Z gets instantiated then X and Y become dependent. 
This is called induced or conditional dependency. 

The three cases described above cover all the ways in which influences can travel in a 
causal network. The separations and dependencies described capture all the ways in 
which the nodes can become independent or dependent. We capture this fact 
rigorously in the following definition: 
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B.2.2   d-Separation 

If X, Y and Z are three disjoint subsets of nodes in a DAG, then Z is said to 
d-separate X from Y, denoted <X\Z I Y>, if along every path between a node in X 
and a node in Y there is a node W satisfying one of the following two 
conditions: (1) W has converging arrows and none of W or its descendants are 
in Z, or (2) W does not have converging arrows and W is in Z. 

If a path satisfies the condition above it is said to be blocked; otherwise it is said to be 
activated by Z. 

Example 

Figure B.5. A network illustrating d-separation. 
Here the node Z d-separates the node X from the node Y. The path X<-Z->Y between X 
and Y is blocked by Z. The path X->U<-Y, between X and Y is also blocked because U 
and its descendants are outside Z. However, X and Y are not d-separated by the set of 
nodes [Z, U), because the path X->U<-Y, between X and Y is now active; knowing U 
will make X and Y dependent. 

B.3     Bayesian Network for a Probabilistic Model 

The following stipulations define a Bayesian Network for a probabilistic model 

• Consider a probabilistic model M consisting of a set U of discrete random variables 
and a joint distribution P() defined over these variables. Let D be a DAG whose set 
of vertices has a one to one correspondence with U. 

• D is said to be an I-map of the probabilistic model M if every d-separation condition 
displayed in D corresponds to a valid conditional independence relationship in M, 
i.e., for every three disjoint sets of vertices X, Yand Z we have 

<XIZIY>=>7(X,Z,Y) 
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• D is a minimal I-map of M if non of its arrows can be deleted without destroying its 
I-mapness. 

• A Bayesian network of the probabilistic model is by definition a DAG D which is a 
minimal I-map of M 

B.3.1   Constructing a Bayesian Network for a Probabilistic Model 

The following questions arise immediately 

• Given a probabilistic model, how can we construct a Bayesisn network? 

• How can this Bayesian network help us in making probabilistic inference? 

Construction of Bayesian networks is facilitated by a key theorem proved by Verma 
[Verma 1986]. Instead of discussing this theorem, let us lay down the steps that explain 
the construction of a Bayesian Network [Heckerman and Wellman 1995]. 

1. Consider a probabilistic model consisting of a set of discrete random variables U 
together with a joint probability distribution P(-) defined over these variables. 

2. Let Xi, X2, ..., X„, be any ordering d of the random variables in U. In this ordering 
let us explicitly denote the joint probability distribution as P(xi, x2,..., x„). 

3. For any X,- take the minimal subset 7Z c { Xi, X2, ..., X-i} such that n renders X, 
and {Xi, X2,..., X-iJ-IZ conditionally independent. That is Pfc I xi,..., Xt-j) = P(x, IW 

4. Create a DAG by designating the elements in the subset 77, as parents of X,. 

5. Verma's theorem asserts that such a DAG would be a Bayesian network of the 
probabilistic model. 

Hence given a probabilistic distribution choose an ordering Xi, Xi,..., X«, of U. Start by 
designating Xi as a root node and assign it the marginal probability P(xi), dictated by 
the joint distribution P(xh x2, ..., xn). Next form the node X2, if X2 is a cause for X2 i.e. if 
P(x2) * P(x21 xi) then establish a directed edge from Xi to X2 and quantify this link by 
the conditional probability P(x2\xi). If Xi does not influence X2 then make X2 a root 
node and assign it the marginal probability P(x2). This process of creating nodes and 
linking them continues in the order chosen. At the z'th stage, we form the node X„ 
following the dictates of the step-3 above we determine the minimal subset lit c: { Xi, 
X2, ..., Xi-i). The nodes in Tli are parents of X, we represent this by drawing the 
appropriate parent to child links and quantify this bunch of links by the conditional 
probability P(xt IW. 

The structure of the Bayesian network constructed above depends upon the node 
ordering d used in the construction. It can be shown that any other ordering d' 
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consistent with the direction of arrows of an already constructed network has the same 
network topology [Pearl 1988]. Hence, once the network is constructed, the original 
order can be forgotten. What does matter are the local orderings displayed by the 
network topology. 

Bayesian networks can be viewed as graphical inference engines for deriving 
probabilistic inferences. Although it can be used, for numerical calculations of 
probabilities more efficiently, its main attraction lies in its ability to bring forth the 
logical dependencies inherent in the probabilistic model. For example, new 
independence relationships from those used in the construction of the network can be 
easily deduced by just inspecting the topology of the network. 

However, the most interesting aspect of the Bayesian network formalism, lies not in its 
ability to reason about probabilistic models more efficiently, but in its ability to create 
probabilistic models ab initio. We discuss this in the next section. 

B.4     Constructing Probabilistic Models for C3I problems 

In this section, given a C3I problem, we show how to construct a Bayesian network for 
representing the uncertainties in this problem. A probabilistic model then emerges 
from the network. 

In the light of the topics discussed in the previous sections, a process of model 
development would comprise the following three stages: 

1. Qualitative stage: Here the general relationships between the variables of interest, in 
terms of the relevance of one variable to others are taken into account. This would 
result in a graphical representation capturing the conditional dependencies in a 
qualitative i.e. non-numerical fashion. 

2. Quantitative stage: The links in the graphical representation are then assigned 
numbers representing conditional probabilities. This allows computation of 
probabilities that are of interest. 

3. Modification stage: Here lessons learnt are incorporated into the model and any 
discrepancies with empirical data or other conflicts are either explained or 
removed. 

B.4.1   Qualitative Stage 

Bayesian networks provide a direct model of the real world environment rather than a 
model of the reasoning process as is done in many knowledge representation schemes 
e.g. neural networks etc. When building a probabilistic model of a real world C3I 
situation, one starts by identifying all the components of interest and associates 
random variables to them. These random variables then assume states corresponding 
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to the various possible states of the respective components. The knowledge about the 
system and intuitive understanding of various dependencies are then used to construct 
the causal structure of the C3I system. Here the graphical representation becomes very 
handy. It permits users to express directly the fundamental, qualitative relationships of 

direct influence. 

A process for obtaining an initial graph can be along the following lines. In the first 
stage we examine each variable to find out if it is a root cause or is directly influenced 
by any other variables. All root causes are then assigned a node each. Let us call these 
nodes leoel-1 nodes. We then find out all the variables that are directly influenced by 
the variables in the level-1 nodes and no other variables. By assigning nodes to these 
variables we obtain a set of level- 2 nodes. A given node at level-2 has as its parents all 
those nodes in level-1 that directly influence this particular node. A set of parent->child 
links are then drawn which now serve as edges of the graph. In the (i+l)th stage we 
identify all the variables that are directly influenced by variables in the preceding t 
levels and no other variables, and add the level-(i+l) nodes. The parents of these nodes 
are identified and the corresponding parent->child links are added. This hierarchical 
process continues until all the variables have a place in the graph and all parent->child 
links are accounted for by edges of the graph. 

It must be stressed here that the whole process is subjective, because the parents are 
identified through the subjective judgement of the individual constructing the graph. 
This procedure is, however, consistent because in the Bayesian network formalism, for 
any node, once the direct influences on it are known, all other potential influences are 
irrelevant as far as constructing the network is concerned. The network then augments 
these with derived relationships of indirect influences in a consistent manner. To this 
end it must be mentioned that we have made a tacit assumption- the subjective 
judgements of causality do not lead to a cycle of causality. 

B.4.2   Quantitative Stage 

Once an initial network is in place, the attention shifts to providing the conditional 
probabilities to specify the strengths of the direct influences discussed above. These 
probabilities are again essentially subjective probabilities. One depends upon one's 
personal judgement, or consults users and experts, to arrive at subjective estimations of 
the conditional probabilities. 

To provide an ordering, we start with the variables at level-1 and serialise them as Xi, 
X>, ..., in some order. After all the variables in level-1 are exhausted we take up the 
variables at level-2 and proceed down the hierarchy until we get a complete ordering of 
the form Xh X2, ..., X„, say. Given any node X„ let 77, denote its parents. The subjective 
probabilities are only required locally to be assigned to the bunch of 77,-»X, 
(parent->child) links as conditional probabilities Pte 177,). For consistency with the 
axioms of probability one has to make sure that these assessments satisfy the relation 
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£p(x, I n,.) = i with o < P(xi \n,)<i 

The network formalism then provides the joint probability distribution over all the 
variables through the relation: 

P(*i x„) = IJP(x,.ini.) 
i 

These joint probabilities then provide quantitative assessments of the problem domain 
that has been modelled. By this we mean probabilistic inferences of the form P(Si I S2) 
where Si and S2 each represent a conjunction of a number of instantiated variables. 
Although a number of efficient algorithms exist to calculate such probabilities, the 
problem is essentially NP-hard [Cooper, 1990; Dagum and Luby, 1993] 

It is the subjective nature of the conditional probabilities Pfe I17,), provided by the user 
or the expert, that brings the model closer to reality as humans perceive. Essentially 
what is required is to assess that an event would occur given a particular state of the 
environment that directly influences the event in question. These kinds of assessments 
are natural to human experts and capture the essence of the empirical knowledge 
acquired through experience. In other words, the resulting network captures the belief 
of the agent who constructs the network. Bayesian networks are therefore often 
referred to as Bayesian Belief Networks (BBN). 

B.4.3   Modification Stage 

As making probabilistic inferences with the network proceeds, the initial network may 
need some modifications. Some links may appear superfluous and some initial beliefs 
may have to be changed. For this purpose learning techniques have been developed for 
systematic updating of the conditional probabilities, as well as the structure of the 
network, so as to match empirical data [Spiegelhalter and Lauritzen, 1990]. 

Furthermore, the situation being modelled may also undergo change requiring a 
corresponding change in the network. Such changes are also easily implemented. In 
fact to quote Pearl [Pearl 1998]: 
"The most distinctive feature of Bayesian networks, stemming largely 'from- their causal 
organisation, is their ability to represent and respond to changing configurations. Any local 
reconfiguration of the mechanisms in the environment can be translated, with only minor 
modification, into an isomorphic reconfiguration of the network topology." 

For example, if we need to add a new node Xnew say, then all we need to do is to 
identify the set of nodes 17 that have direct influence on Xnm and provide a 
quantification of the local links /7-»Xnra!. We need not worry about the effects Xnew 

would have on nodes outside Tl. The network formalism guarantees this local change 
to be consistent with the global topology. 
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B.5     Propagation of Evidence in a Bayesian network 

Suppose we have built a Bayesian network representing the uncertainties in some 
problem we are interested in. If evidence arrives indicating the states of some random 
variables, how would we update our knowledge regarding the states of other random 
variables. We discuss this point here. Again we will not be able to discuss evidence 
propagation in all its generalities, the interested reader may consult literature on the 
theory of Bayesian networks cited before. Alkwe intend to do is give enough details so 
the applications we discuss in this document become transparent. 

® 

1 
© 

© © 

Figure B.6. A Bayesian network illustrating evidence propagation. 

Consider the Bayesian network depicted above. The network structure provides the 
conditional probabilities P(y\x), P(e\y), and P(f\y). We consider two modes of 
propagation of evidence: 

Propagation along the Links: 
If evidence arrives that X has assumed the value xh then the probability 
distribution over the states of Y are given by P(y\xi) which can be directly 

calculated from the conditional probabilities. Similarly P(e \x1) = ^P(e\ y)P(y I xx) 
y 

is also calculated by the network conditional probabilities. 

In general when we fix the prior probability distribution • over the node X, 
depending upon the pre-existing knowledge, this distribution propagates along the 
links to fix the prior-probability distribution over all other nodes. In other words 
propagation along the links fixes the prior distributions. 

Propagation against the link 
If evidence arrives that E has assumed the value e3 and F has assumed the value/i, 
then these evidence update the probability distribution over the states of X 
according to the dictates of Baye's rule: 
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J^P(f1\y)P(e1\y)P(y\x)P(x) 

P(* I ei.fi)= £p(A , y)p(gi , y)p{y , x)p(x) 

y* 

Here Pfr I e3//j) are the posterior probabilities whereas P(x) occurring in the right 
hand side are the prior probabilities 

Hence propagation against the links updates the prior distributions. 

Generally Bayesian networks are constructed so that the root nodes, like X above, 
represent variables that are not directly observable. Variables that are observable often 
occupy the lower levels of a network. When observational evidence arrives these are 
channelled through the intermediate nodes to the root nodes. Probability distributions 
are updated by the dictates of Baye's rule as shown above. Directly observable 
variables are called information variables. Variables that are not directly observable and 
the knowledge about whose states are inferred from the evidence gathered regarding 
information variables are called hypothesis variables. In the above X is a hypothesis 
variable which, say, represents the disease suffered by a patient. E and F represent 
symptoms, these are directly observable. Y can be some medical condition. In general 
therefore evidence propagates from the information variables to the hypothesis 
variables in the direction against the links. 
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Appendix C: Situation Assessment; A Case Study 

In this appendix a particular evolution of situation, for the scenario constructed in 
section 2.5, is considered. We demonstrate the use of Bayesian networks for updating 
our belief in the hypothesis variable enemy intentions. 

After receiving intelligence about the trade pact between the enemy and the neutral 
country, HMAS ANZAC is tasked to put the designated zone under constant 
surveillance. 

Stage 1. At this initial stage enemy intention is more likely to be passive. Figure C.l 
shows the network with such a prior distribution. A neutral tanker is detected at a 
subsequent point of time near the zone boundary moving slowly while communicating 
with base. Figure C.2 utilises this information to update belief in hypothesis. Following 
the recommended course of action HMAS ANZAC despatches the patrol boat which 
turns the tanker back to its port of origin. 

Stage 2. As a result of the action taken by HMAS ANZAC enemy intention is very 
likely to become defensive - Figure C.3 reflects this apprehension. An Orange FCPB 
approaches the restricted zone to conduct reconnaissance moving slowly parallel to the 
zone boundary. Figure C.4 uses these data to update belief and suggest Blue COA. 
HMAS ANZAC sends the Fill for attack at which point the patrol boat retreats out of 
the designated area, the Fill is withdrawn. 

Stage 3. The enemy now being aware of the intention and possibly the size of the 
Blue forces dispatches a communication ship which takes up position near the boundary 
of the designated zone and commences EW activity. This is detected by HMAS ANZAC 
and the JOR is advised of the situation. Figures C.5 and C.6 depict the prior and 
posterior knowledge. 

Stage 4. At this point of development the enemy intention is more likely to turn 
offensive. An Orange force frigate enters the restricted zone and takes up position to 
defend the supply rout. The Orange force frigate is detected and JOR informed. Figures 
C.7 and C.8 depict the prior and posterior knowledge about the situation. Although the 
recommended course of action favours launching a minor offensive, JOR orders HMAS 
ANZAC to mount a full scale attack the orange frigate coordinating the attack with 
Fill and pursue the attack until there is a 90% certainty that the frigate is crippled. 
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Enemy Intention 
Passive 60.0 
Defensive 30.0 
Offensive 6.00 
Not Modelled 4.00 

Vessel Type 
FFG 12.1 
FCPB 31.7 
Comm Ship 16.3 
Tanker 39.9 

Activity 
Logistics             45.0 
Reconn               20.7 
EW                      9.88 i 
Route Defence   16.1 ■ 
Attack                 5.07 
Inactive              3.26 

Comm Activity 
Radio Silence 40.9 
Comm with b... 46.1 
Jamming 13.0 

Position 
Outside Zone 13.4 
At Boundary 22.6 
Near supply ... 58.0 
Well forward 5.95 

Sensor Identification 
FFG 15.4 
FCPB 28.4 
Comm Ship 20.1 
Tanker 36.1 

Sensor Comm Int 
Radio Silence 40.9 
Comm with b... 44.1 
Jamming 15.0 

Sensor Position Int 
Outside Zone 13.9 
At Boundary 25.2 
Near supply ... 50.5 
Well forward 10.4 

Recon Identification 
FFG 15.3 
FCPB 30.7 
Comm Ship 17.5 
Tanker 36.5 

Recon Position Int 
Outside Zone 16.1 
At Boundary 23.2 
Near supply ... 55.2 
Well forward 5.46 

Recon Mobility Int 
Immobile 8.10 
Slow parallel 19.7 
Slow forward 14.4 
Slow backward 14.0 
Rapid parallel 26.1 
Rapid forward 10.1 fci 
Rapid backw... 7.58 

Blue COA 
Routine Action 18.8 
Interception 51.0 
Minor Offensive 20.1 
Major Offensive 6.24 i 
Not Known 3.97 

Mobility 
Immobile            9.71 ■ 
Slow parallel      20.6 
Slow forward      11.3 ■ 
Slow backward  10.9 i 
Rapid parallel    40.5 Ijj^H 

Rapid forward     5.50 
Rapid backw...   1.56 

Sensor Mobility Int 
Immobile 8.32 
Slow parallel 19.0 
Slow forward 14.3 
Slow backward 13.9 
Rapid parallel 31.7 
Rapid forward 8.17 
Rapid backw... 4.60 i 

Figure C.l. Stage 1 prior probability distributions. 

Enemy Intention 
Passive 95.4 
Defensive 3.40 
Offensive 0.13 
Not Modelled 1.02 

Vessel Type 
FFG               .003 
FCPB           .010 
Comm Ship .005 
Tanker          100 

Activity 
Logistics 94.9 
Reconn 3.85 
EW 0.41 
Route Defence 0.23 
Attack .001 
Inactive 0.65 

ZL 

1 ' 
Senior Identification 

FÜG/ : JU-     0 
FCPB               O 
Comm Ship   ,• O 
■|anMf.--'.:i --■■! 00 

Comm Activity 
Radio Silence    .043 
Comm with b... 99.5 
Jamming           0.48 

.'■'. .;" 

Position 
Outside Zone 
At Boundary 
Near supply ... 
Well forward 

32.3 
66.5 
1.29 

' 0 + 

Sensor Comm totjiStß 
ftadfo Silence       0 
Comm with b...' 100 
Jamming              0 

Sensor Position Int 
c«tsi& Zornig 
At Boundary 
Near supply... 
Well forward    ■ 

Blue COA 
Routine Action 10.7 
Interception 85.3 
Minor Offensive 2.08 
Major Offensive 0.91 
Not Known 1.07 

Mobility 
Immobile 1.14 
Slow parallel 49.0 
Slow forward 36.7 
Slow backward 3.67 
Rapid parallel 9.47 p 
Rapid forward .075 
Rapid backw... .015 

Recon I do nttftcatlofl 
FFG 0 
FCPB 0 
Comm Ship O 
Tanker 100 

vvRaco» Position Int. y • t 
OutskJeZone     100 p^iJJB^pj 
At Boundary         O 
Near supply,.,      0 
WeAforward          0 

Figure C.2. Stage 1 posterior probability distributions. 

45 



DSTO-TR-0918 

Enemy Intention 
Passive 25.0 
Defensive 51.0 
Offensive 20.0 
Not Modelled 4.00 

Vessel Type 
FFG 23.8 
FCPB 39.8 
Comm Ship 18.0 
Tanker 18.4 E 

Activity 
Logistics            19.9 
Reconn 18.2 
EW 14.2 
Route Defence  28.2 
Attack 16.2 
Inactive 3.26 

Comm Activity 
Radio Silence 53.6 
Comm with b... 28.4 
Jamming 18.0 

Outside Zone 13.0 
At Boundary 21.1 
Near supply ... 50 " 
Well forward 15.1 

Position 

Sensor Identification 
FFG 24.9 
FCPB 35.4 
Comm Ship 22.6 
Tanker 17.1 

Sensor Comm Int 
Radio Silence 53.6 
Comm with b... 29.2 
Jamming 17.3 

Sensor Position Int 
Outside Zone     13.4 ■,_   \:   t 

At Boundary      23.4 •■,';,, 
Nearsupply ...   45.2 atm^,.; 
Well forward       18.0 ■' 

Recon Identification 

FFG 25.8 
FCPB 38.6 
Comm Ship 18.3 
Tanker 17.3 

Recon Position Int 
Outside Zone 15.4 
At Boundary 21.6 
Nearsupply ... 49.3 
Well forward 13.7 

Recon Mobility Int 
Immobile 9.84 
Slow parallel 22.3 
Slow forward 16.4 
Slow backward 15.1 
Rapid parallel 16.9 
Rapio forward 13.9 
Rapid backw... 5.45 

Blue COA 
Routine Action 10.4 
Interception 33.5 
Minor Offensive 35.2 
Major Offensive 16.9 
Not Known 3.96 

Mobility 
Immobile            12.2 ■ . : .  .;. 
Slow parallel      25.2 wm.   - 
Slow forward      12.1 ■ 
Slow backward  10.9 ■ 
Rapid parallel     22.7 m 
Rapid forward     15.0 
Rapid backw...   1.91 

Sensor Mobility Int 
Immobile 10.3|t 
Slow parallel 22.1 
Slow forward 15.5 
Slow backward 14.3 
Rapid parallel 19.5 
Rapid forward 14.8 
Rabid backw... 3.63 

Figure C.3. Stage 2 prior probability distributions. 

Vessel Type 
FFG              0.53 
FCPB            98.3 
Comm Ship  1.10 
Tanker          .022 

' 1 
Sonsor Identification > 

FIG                  0 
FCPB                 0 
Comm Shu   100 
Tanker Jiff 

Beeoo ttHnttflotlon 
FFG 0 
FCPB 100 
Comm Ship 0 
Tanker   0 

Outside Zona 
At Boundary        100 
Nearsupply...       0 
Well forward 0 

Immobile 
Slow parallel 
Slow forward 
Slow backward, 
Rapid parallel 
Rapid forward 
Rapid backw.^. 

0 
0 

100 
0 
0 
0 
0 

Blue COA 
Routine Action 19.8 
Interception 16.7 
Minor Offensive 59.1 
Major Offensive 3.54 
Not Known 0.84 

Mobility 
Immobile           0.79 
Slow parallel      62.8 
Slow forward      30.2 
Slow backward 6.02 i 
Rapid parallel    .090 
Rapid forward    0.12 
Rapid backw...  .017 

Serrsor Mobility Int 

Immobil« 
Slow parallel..' 
Slow forward;' * 
Slow backward M 
Rapid parallel - 
Rapid forward 
Rapid backw ■ 

Figure C.4. Stage 2 posterior probability distributions. 
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Vessel Type 
FFG 33.3 
FCPB 40.5 
Comm Ship 17.2 
Tanker 8.99 

Enemy Intention 
Passive 10.0 
Defensive 51.0 
Offensive 35.0 
Not Modelled 4.00 

Activity 
Logistics 9.01 
Reconn 15.0 
EW 14.3 
Route Defence 30.5 
Attack 28.0 
Inactive 3.26 

Comm Activity 
Radio Silence 60.9 
Comm with b... 20.1 
Jamming 19.0 

Position 
Outside Zone 11.6 
At Boundary 18.6 
Near supply ... 45.7 
Well forward 24.1 

Sensor Identification 
FFG 32.3 
FCPB 36.5 
Comm Ship 22.5 
Tanker 8.74 

Sensor Comm Int 
Radio Silence 60.8 
Comm with b... 21.9 
Jamming 17.2 

Sensor Position Int 
Outside Zone 12.0 
At Boundary 20.8 
Near supply ... 41.6 
Well forward 25.6 

Recon Identification 
FFG 34.2 
FCPB 39.7 
Comm Ship 17.2 
Tanker 8.95 

Recon Position Int 
Outside Zone 13.6 
At Boundary 19.2 
Near supply ... 45.3 
Well forward 21.9 

Recon Mobility Int 
Immobile 9.711 
Slow parallel 21.71 
Slow forward 16.61 
Slow backward 14.31 
Rapid parallel 13.7 L 
Rapid forward 19.41 
Rapid backw... 4.561 

Blue COA 
Routine Action 6.53p 
Interception 24.1 
Minor Offensive 37.9 
Major Offensive 27.5 
Not Known 3.96 

Mobility 
Immobile            12.2 ■ 
Slow parallel      24.7 
Slow forward      11.9 ■ 
Slow backward 9.77 ■ 
Rapid parallel    14.6 ■ 
Rapid forward     24.9 Hi 
Rapid backw...   1.93 

Sensor Mobility Int 
Immobile 10.2 i 
Slow parallel 21.7 m 
Slow forward 15.3 ■ 
Slow backward 13.2 ■ 
Rapid parallel 14.2 ■ 
Rapid forward 22.3 ■ 
Rapid backw... 3.04 _ 

Figure C.5. Stage 3 proir probability distributions. 

Enemy Intention 
Passive 3.68 
Defensive 84.7 
Offensive 9.07 
Not Modelled 2.53 

Vessel Type 
FFG .024 
FCPB .056 
Comm Ship 99.9 
Tanker .007 

Logistics 0.27 
Reconn 7.81 
EW 89.6 
Route Defence 0.74 
Attack 0.13 
Inactive 1.46 

1 r 
Sensor Identification . 

FFG                    0 
FCPB                0 
Comrri'ShipfilOO 
Tanker- ■   '-\;Ki':0 

'.■'.■ 

Recon Identification 
FFG                   0 
FCPB    ,   %    0 
Comm Ship   100 
Tanker      '.-■■■■   0 

Activity 

Position 
Outside Zone 
At Boundary 
Near supply ... 
Well forward 

50.8 
49.1 
.090 
0 + 

M 
Senaor Position? Int' -  - 

Outside Zone 
At Boundary 100 
Near supply ... 
Well forward Äfff r. ', -: 

Recon Position Int 
Outside Zone     TOO 
At Boundary .       0 
Near supply... 
Well forward    ''    0 

Bacon Mobility Int 
.tmmobilaPff? «*j 
Slow parallel 
Slow forward 
Slow backward ■ 
Rapid parallel i 
Rapid forward," 
Rapid backw... 

Blue COA 
Routine Action  9.60 
Interception       64.5 
Minor Offensive 22.5 
Major Offensive 0.90 
Not Known         2.52 

,:':'' , :;' 

Mobility 
Immobile           13.4 ■ 
Slow parallel     9.00 t,:\           ," 
Slow forward      76.0 
Slow backward 1.52 
Rapid parallel    .062 
Rapid forward    .055 
Rapid backw...  .009 

Sensor Mobility Int 

Immobile 0 
Slow parallel 0 
Slow forward .'   100 
Slow backward 0 
Rapid parallel 0 
Rapid forward' ,   0 
B'a'pia1 backw... 0 

Figure C.6. Stage 3 posterior probability distributions. 
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Enemy Intention 

Passive 6.00 
Defensive 35.0 
Offensive 55.0 
Not Modelled 4-00 

Vessel Type 

FFG 43.9 
FCPB 35.8 
Comm Ship   14.2 
Tanker 6.15 F 

Activity 

Logistics              5.85 ( 
Reconn                10.4 m 
EW                         11.0 ■  ' 
Route Defence   25.8 M* 

Attack                   43.6 
Inactive                 3.26 

Sensor Identification 

FFG 40.3 
FCPB 33.2 
Comm Ship 20.2 
Tanker 6.24k 

Comm Activity 

Radio Silence 66.2 
Comm with b... 16.6 
Jamming 17.2 

Position 

Outside Zone 8.99 
At Boundary 14.6 
Near supply ... 40.8 
Well forward 35.6 

Sensor Comm Int 

Radio Silence 66.1 
Comm with b... 18.5 
Jamming 15.5 

Sensor Position Int 

Outside Zone 9.42 
At Boundary 16.9 
Near supply ... 38.2 
Well forward 35.4 

Recon Identification ' 

FFG 43.6 
FCPB 35.7 
Comm Ship 14.3 
Tanker 6.42 

Recon Position Int 

Outside Zone 10.7 
At Boundary 15.4 
Near supply ... 41.7 
Well forward 32.2 

Recon Mobility Int 

Immobile 8.1 Of 
Slow parallel 18.51 
Slow forward 15.41 
Slow backward 11.81 
Rapid parallel 14.01 
Rapid forward 27.81 
Rapid backw... 4.381 

Blue COA 

Routine Action   4.95 i 

Interception         18.3 ■    - 
Minor Offensive 31.8 ■■1 
Major Offensive 41.0 mmm ,    . 
Not Known           3.96 ■      -         ■-:    '■ 

Mobility 

Immobile               10.2 i 
Slow parallel       20.1 
Slow forward        10.9 » " 
Slow backward  7.58 i   ■-., 

Rapid parallel     11.6 » > 
Rapid forward     37.9 ■MB V 
Rapid backw...   1.72 

Sensor Mobility Int 

Immobile 8.49 
Slow parallel 18.5 
Slow forward 14.0 
Slow backward 10.7 
Rapid parallel 12.9 
Rapid forward 32.8 
Rapid backw... 2.60 ■ 

Figure C.7. Stage 4 prior probability distributions. 

Enemy Intention 

Passive 1.20 
Defensive 50.3 
Offensive 47.0 
Not Modelled 1.47 

Vessel Type 

FFG              98.4 
FCPB            1.36 
Comm Ship  0.14 
Tanker          .047 

' 
Senior Identification 

FFQ                100 
FCP8                 0 
Comm Ship       0 
Tanker              0 

äöfift?* 

Activity 

Logistics 0.16 
Reconn 7.48 
EW 0.45 
Route Defence 66.5 
Attack 24.5 
Inactive 0.86 

Comm Activity 

Radio Silence 76.1 
Comm with b... 15.8 
Jamming 8.09 p 

Position 

Outside Zone .013 
At Boundary 0.20 
Near supply ... 98.9 
Well forward 0.90 

Sensor Comm Int 

Radio Silence 75.9 
Comm with b... 15.9 
Jamming 8.12 

Sensor Position Int 

Outside Zone         0 
Al Boundary       100 
Near supply,.        0 
Well forward           0 

.-,,,,.., 

Recon Identiflcatlon- 

FFG 100 
FCPB 0 
Comm Ship 0 
Tanker 0 

Recon Position Int 

Outside Zone 0 
At Boundary 0 
Naar supply J. 100 
Well forward 0 

Recon Mobility Int 

'Immobile 
Slow parallel 
Slow forward 
Slow backward 
Rapid parallel 
Rapid forward 
Rapid backw... 

Blue COA 

Routine Action 4.90 
Interception 9.56 
Minor Offensive 57.1 
Major Offensive 26.9 
Not Known 1.51 

Mobility 

Immobile            0.87 
Slow parallel      54.7 
Slow forward      39.6 ■*■-, 
Slow backward 2.11 i;t:^:;:^:o.:^:": 

Rapid parallel    0.47 
Rapid forward     2.25 i     <     ' 
Rapid backw...   .013 

Sensor Mobility Int 

Immobile     ,: ' 0 
Slow parallel' 0 
iSlow.forward.;- 100 
Slow backward 0 
Rapid parallel 0 
Rapid forward . 0 
Rapid bacaw... 0 

Figure C.8. Stage 4 posterior probability distributions. 
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Appendix D: Calculating Effectiveness 

In this appendix we calculate some of the effectiveness measures mentioned in section 
3. All computations are with regard to the Bayesian network for situation assessment 
as depicted in Figure 2.2, except that we have simplified the network by removing the 
reconnaissance nodes. This does not affect the generality of the computing procedures, 
it just makes the computations less cumbersome. 

D.l    Evaluating the effect of evidence 

Consider the Bayesian network for the situation assessment problem. Let us choose 
Activity as the target hypothesis variable. We want to calculate the reduction in 
uncertainty in Activity when evidence is obtained regarding the information variables 
Position and Mobility. Since Activity is not a root node, we modify the network as 
shown in Figure D.I. Here the node Activity has been disconnected from its parent 
node Enemy Intention and becomes a root node consequently. All the states in Activity 
have the same prior probability giving it the maximum prior uncertainty: 

H(Activity) = log 6 = 2.5849 bits. 

Figure D.2 shows the situation where we have incorporated the following evidence: 

Sensor Position Int (SPI) := Near Supply Route 

Sensor Mobility Int (SMI) := Slow Parallel 

The conditional probabilities can now be read off from the Activity node. This 
immediately leads to the conditional entropy 

H(Activity I SPI = Near supply route, SMI=Slow parallel) 

= - 0.20241og 0.202 - 0.2761og 0.276 - 0.02241og 0.0224 - 0.4841og 0.484 

- 0.03651og 0.0365 - 0.0784log 0.0784 

= 1.9410 

The uncertainty reducing capacity of the above evidence is 2.5849 -1.9410 - 0.6439 bits 

D.2    Gain in Belief Updating 

Consider a stage during situation assessment when previous evidence strongly 
suggests that enemy intention is defensive. This situation is depicted in Figure D.3 
where the Bayesian network is initialised with a prior probability distribution Pi 
indicating defensive enemy intentions. Figure D.4 depicts the updated situation after 
the latest batch of sensor evidence have been used to update the prior belief. The 
updated probability distribution over enemy intention is P2. 
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X Passive Defensive Offensive Not Modelled 

Pi(x) 0.03 0.90 0.06 0.01 

Pi(x) 0.0032 0.425 0.565 0.0062 

Whereas Pi was peaked P2 is flat. The loss of peak indicates a considerable change in 
the nature of the situation. The enemy has changed its intentions significantly. It would 
be unwise to stick to Pi although that indicated more definitely what the enemy 
proposed to do. Although P2 incorporates more uncertainty than Pi it is a better 
reflection of the latest observations. The efficiency gained due to updating information 
is given by D(P2\Pi) which can be calculated using the formula 

D(P2|i\)= -SP2WloSPiW +J>2(*)logP2W =2.41953-2.06202 = 1.35752 bits 

D.3    Effectiveness of the Position Detection Sensor 

Consider the situation assessment network again. We denote by 
X:  Enemy Intention 
Y:  Position 
Z:  Sensor Position Int 
The effectiveness of the position detection sensor is then given by I(X;Y) - I(X;Z). To 
calculate this we initialise the network with a prior probability which gives maximum 
entropy to X as shown in figure D.5. We get 
P(X): 

X Passive Defensive Offensive Not Modelled 

P(x) 0.25 0.25 0.25 0.25 

P(Y) 

y Outside Zone At Boundary Near Supply Route Well Forward 

P(y) 0.108 0.27 0.453 0.170 

P(Z) 

z Outside Zone At Boundary Near Supply Route Well Forward 

P(z) 0.139 0.286 0.375 0.201 

To obtain PfXIY) and PfXIZ) we successively instantiate Y and Z to their various 
values and allow the network to calculate the conditional probabilities. Figure D.6 
depicts the case where we have instantiated Y= Outside Zone. We get 
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x = Passive x - Defensive x = Offensive x =Not Modelled 
y - Out Zone 0.284 0.406 0.221 0.089 
y = At Boundary 0.221 0.232 0.0868 0.47 
y = Near Supply 0.355 0.293 0.172 0.180 
y = Well Forward 0.0114 0.0648 0.736 0.188 

P(x 1 z) 

x = Passive x = Defensive x = Offensive x =Not Modelled 
z = Out Zone 0.258 0.339 0.174 0.229 
z = At Boundary 0.248 0.258 0.119 0.375 
z = Near Supply 0.316 0.270 0.218 0.196 
z = Well Forward 0.124 0.140 0.548 0.188 

The above data yields 
H(X) = 2, H(X I Y) = 1.744433, H(X IZ) = 1.897761 bits 
Hence 
I(X; Y) = H(X) - H(X I Y) = 0.25567 bits and 
I(X; Z) = H(X) - H(X IZ) = 0.102239 bits 
Hence the uncertainty reducing capacity of the position detection sensor defers from 
that of an ideal sensor by an amount: 
I(X;Y) - I(X;Z) = 0.15343 bits. 
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Vessel Type 
FFG 26.2 
FCPB 34.6 
Comm Ship 23.3 
Tanker 15.9 

^ 
Comm Activity 

Radio Silence 43.7 
Comm with b... 33.8 
Jamming 22.5 

Sensor Vessel ID 
FFG 28.4 
FCPB 30.3 
Comm Ship 27.8 
Tanker 13.6 

Sensor Comm Int 
Radio Silence 42.0 
Comm with b... 32.6 
Jamming 25.4 

Enemy Intention 
Passive 25.0 
Defensive 25.0 
Offensive 25.0 
Not Modelled 25.0 

Activity 
Logistics 
Reconn 
EW 
Route Defence 
Attack 
Inactive 

Position 
Outside Zone 14.2 
At Boundary 26.7 
Near supply ... 42.9 
Well forward 16.2 

Sensor Position Int 
Outside Zone 16.5 
At Boundary 28.6 
Near supply ... 35.7 
Well forward 19.1 

Blue COA 
Routine Action   20.7 ■     , 
Interception       22.8 ■.'   -.   . 
Minor Offensive 16.0 ■•    ■   • 
Major Offensive 8.77 • ' ■.', ' 
Not Known         31.8 ■■   '.-.'■ 

Mobility 
Immobile            26.6 
Slow parallel      18.6 1" ■ ' 
Slow forward      10.6 ■ . <  ,<   - 
Slow backward 9.29 ■ !   ' 
Rapid parallel     18.2 ■ ' 
Rapid forward     15.1 * v: 
Rapid backw...   1.65 

4 
Sensor Mobility Int 

Immobile 
Slow parallel 
Slow forward 
Slow backward 
Rapid parallel 
Rapid forward 
Rapid backw... 

Figure D.I. The node Activity has been disconnected from its parent node Enemy 
Intention and as a consequence becomes a root node. 

Vessel Type 
FFG 18.6 
FCPB 59.8 
Comm Ship 11.1 
Tanker 10.5 

3», 
Comm Activity 

Radio Silence 
Comm with b... 
Jamming  

Sensor Vessel ID 
FFG 24.1 
FCPB 45.3 
Comm Ship 20.5 
Tanker 10.1 

Sensor Comm Int 
Radio Silence 59.4 
Comm with b... 26.5 
Jamming 14.1 

Enemy Intention 
Passive           25.0 
Defensive        25.0 
Offensive         25.0 
Not Modelled  25.0 

fill 

Activity 
Logistics            10.2 I  .    .   . 
Reconn              27.6 
EW                     2.24 .    .   . 
Route Defence  48.4 ■^■r   ' 
Attack               3.65 
Inactive               7.84 I 

1 
Position 

Outside Zone     0.27 
At Boundary      5.39 
Near supply ...   90.5 
Well forward      3.86 

i   .   .   . 

:.:        !.,       . 

I 
Sensor Position Int 

Outside Zone 0 
At Boundary 0 
Near supply ... 100 
Well forward 0 

Blue COA 
Routine Action   20.8 
Interception        18.0 
Minor Offensive 29.2 
Major Offensive 4.17 
Not Known         27.7 

i   '    •   ' 

Mobility 
Immobile            8.39 
Slow parallel      68.6 
Slow forward      8.79 
Slow backward 7.95 
Rapid parallel    3.65 
Rapid forward     2.36 
Rapid backw...  0.25 

i       ,   , 

■ •   •   ■ 
i  •   ■   ' 

Sensor Mobility Int 

Slow parallel 
Slow forward 
Slow backward 
Rapid parallel 
Rapid forward  i 
Rapid backw... 

mm 
t*oo 

o 
0 
0 
0 

-0 

Figure D.2. Updated situation for evidence Sensor Position Int (SPI) := Near Supply Route 
Sensor Mobility Int (SMI) := Slow Parallel 
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Enemy Intention 
Passive          3.00 
Defensive        90.0 
Offensive        6.00 
Not Modelled    1.0 '   : 
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Vessel Type 

FFG 18.8 
FCPB 52.8 
Comm Ship 23.2 
Tanker 5.14 

Activity 

Logistics 4.31 
FSeconn 23.1 
EW 22.7 
Route Defence 44.7 
Attack 4.32 i 
Inactive 0.85 

Blue COA 

Routine Action 6.25 
Interception 28.5 
Minor Offensive 56.5 
Major Offensive 7.72 
Not Known        1.07 

Comm Activity 

Radio Silence 
Comm with b... 
Jamming 

Position 

Outside Zone 16.7 
At Boundary 24.3 
Near supply ... 51.9 
Well forward 7.10 

Mobility 
Immobile          15.1 ■     .   , 
Slow parallel      35.7 
Slow forward     14.4 ■ 
Slow backward 14.1 ■ .:.■■■'■ ' 

Rapid parallel    12.7 ■ ■■'.'■ 

Rapid forward    5.46 I 

Rapid backw... 2.53 ..   ■ • ■ 

Sensor Vessel ID 

FFG 24.4 
FCPB 41.1 
Comm Ship 27.8 
Tanker 6.76 

Sensor Comm Int 

Radio Silence 54.4 
Comm with b... 20.5 
Jamming 25.1 

Sensor Position Int 

Outside Zone 18.1 
At Boundary 28.6 
Near supply ... 40.1 
Well forward 13.2 

Sensor Mobility Int 
Immobile          11.4 ■ 
Slow parallel     29.1 ■r ,   . 
Slow forward      19.0 ■        . 
Slow backward 18.7 ■ •   •   " - 
Rapid parallel    10.5 ■ ' 
Rapid forward    6.76 (. .,   , 
Rapid backw... 4.62 

!■':'■■ ■■'•    ': ■ 

Figure D.3. Bayesian network initialised with a prior probability distribution Pi 

Enemy Intention 

Passive 0.32 
Defensive 42.5 
Offensive 56.5 
Not Modelled 0.62 

Vessel Type 

FFG 33.0 
FCPB 66.2 
Comm Ship 0.45 
Tanker 0.33 

Comm Activity 
Radio Silence    99.0 
Comm with b... 0.64 
Jamming            0.33 

Sensor Vessel ID 
FF6     ..-.,.    0 
FCPB             100 
Comm Ship       0 
Tanker              0 

Sensor Comm Int 
Radio Silence 
Comm with b... 
Jamming 

100 
0 
0 

Activity 

Logistics 0.22 
Reconn 4.86 
EW .016 
Route Defence 32.2 
Attack 62.7 
Inactive .001 

Position 

Outside Zone .014 
At Boundary 0.41 
Near supply ... 28.4 
Well forward 71.2 

Sensor Position Int 
Outside Zone •; 0 
At Boundary 0 
Near supply.» 0 
Well forward  : 100 

Blue COA 

Routine Action 2.86 
Interception 4.42 i 
Minor Offensive 34.5 
Major Offensive 57.6 
Not Known 0.68 

Mobility 

Immobile .015 
Slow parallel 2.38 
Slow forward 4.01 i 
Slow backward 0.75 
Rapid parallel 16.8 
Rapid forward 75.9 
Rapid backw... 0.15 

Sensor Mobility Int 

Immobile 
Slow parallel ! 

Slow forward 
Sldwibackward 
Rapid parallel, 
Rapid forward, L 
Rapid backw... 

. V 0 
*i0 
v- 0 

0 
0 

100 
0 

Figure D.4. The updated probability distribution Pi. 
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Vessel Type 
FFG 26.9 
FCPB 35.1 
Comm Ship 20.2 
Tanker 17.8 

Comm Activity 
Radio Silence 43.8 
Comm with b... 37.8 
Jamming 18.4 

Sensor Vessel ID 
FFG 28.8 
FCPB 30.6 
Comm Ship 25.9 
Tanker 14.8 

Sensor Comm Int 
Radio Silence 42.0 
Comm with b... 35.2 
Jamming 22.8 

Enemy Intention 
Passive            25.0 
Defensive          25.0 
Offensive          25.0 
Not Modelled   25.0 

jj         " 

Logistics 
Reconn 
EW 
Route Defence 
Attack 
Inactive  

Po sition 
Outside Zone 10.8 
At Boundary 27.0 
Near supply .. .    45.3 
Well forward 17.0 ■ 

I 
Sensor Position Int 

Outside Zone 13.9 
At Boundary 28.6 
Near supply ... 37.5 
Well forward 20.1 

Blue COA 
Routine Action   10.4 
Interception         27.8 
Minor Offensive  21.4 
Major Offensive  16.2 
Not Known           24.1 

■*' :: 

Mobility 
Immobile             26.5 ■■ 
Slow parallel       18.0 ■ 
Slow forward       10.0 1 

Slow backward  8.70 1 

Rapid parallel     19.9 M 

Rapid forward     15.5 ■ 
RaDid backw...   1.46 ' 

* 
Sensor Mobility Int 

Immobile 17.6 
Slow parallel 18.6 
Slow forward 14.7 
Slow backward 13.6 
Rapid parallel 15.9 
Rapid forward 14.9 
Rapid backw... 4.72 

Figure D.5. Prior probability distribution corresponding to maximum entropy. 

Vessel Type 
FFG 12.7 
FCPB 8.51 
Comm Ship 56.8 
Tanker 22.1 

Radio Silence 
Comm with b... 
Jamming  

Enemy Intention 

Passive           28.4 
Defensive        40.6 
Offensive         22.1 
Not Modelled   8.96 

m.   «   . 
• •   ■   > 

Sensor Vessel ID 

FFG                21.3 
FCPB             13.3 
Comm Ship   47.9 
Tanker          17.5 

■ ,    . 
Radio Silence 13.2 
Comm with b... 31.1 
Jamming 55.8 

Blue COA 
Routine Action 11.5 
Interception 66.4 
Minor Offensive 11.5 
Major Offensive 1.91 
Not Known 8.69 

Mobility 

Immobile            44.5 
Slow parallel      13.8 ■-, *> >. 
Slow forward      6.91 I   .    .   • 
Slow backward 6.82 I   ,    .   . 
Rapid parallel     23.2 
Rapid forward     1.81 i   .   . 

Rapid backw...   2.96 '?;:t^:^ '^ 

Sensor Mobility Int 

Immobile            28.4 mv!%-z-:- 
Slow parallel      17.1 m, 
Slow forward      13.7 . 
Slow backward  13.7 
Rapid parallel     15.6 ■>j? 
Rapid forward     5.35 i   ' 

Rapid backw...   6.18 (;:->   . •"„■■< 

Figure D.6. Posterior probability distribution with Position = Outside Zone 
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